Sahar Ghannay
Sahar Ghannay
Home
Research
Publications
Teaching
Contact
Sahar Ghannay
Latest
Continual self-supervised domain adaptation for end-to-end speaker diarization
Benchmarking Transformers-based models on French Spoken Language Understanding tasks
Étude comparative de modèles Transformers en compréhension de la parole en français
OVERLAP-AWARE LOW-LATENCY ONLINE SPEAKER DIARIZATION BASED ON END-TO-END LOCAL SEGMENTATION
Evaluating the carbon footprint of NLP methods: a survey and analysis of existing tools
Where Are We in Semantic Concept Extraction for Spoken Language Understanding?
Neural Networks approaches focused on French Spoken Language Understanding: application to the MEDIA Evaluation Task
Error Analysis Applied to End-to-End Spoken Language Understanding
What is best for spoken language understanding: small but task-dependant embeddings or huge but out-of-domain embeddings?
A Comparison of Metric Learning Loss Functions for End-To-End Speaker Verification
A Metric Learning Approach to Misogyny Categorization
A study of continuous space word and sentence representations applied to ASR error detection
End-to-end named entity and semantic concept extraction from speech
TED-LIUM 3: Twice as Much Data and Corpus Repartition for Experiments on Speaker Adaptation
Task Specific Sentence Embeddings for ASR Error Detection
Représentations de phrases dans un espace continu spécifiques à la tâche de détection d'erreurs
Simulation d'erreurs de reconnaissance automatique dans un cadre de compréhension de la parole
End-to-end named entity extraction from speech
Simulating ASR errors for training SLU systems
Enriching confusion networks for post-processing
ASR Error Management for Improving Spoken Language Understanding
Using Hypothesis Selection Based Features for Confusion Network MT System Combination
Acoustic word embeddings for ASR error detection
Recent improvements on error detection for automatic speech recognition
Evaluation of acoustic word embeddings
Utilisation des représentations continues des mots et des paramètres prosodiques pour la détection d'erreurs dans les transcriptions automatiques de la parole
Word embedding evaluation and combination
Combining continous word representation and prosodic features for ASR error prediction
Which ASR errors are hard to detect?
Word embeddings combination and neural networks for robustness in ASR error detection
Cite
×