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Why measure the impact of NLP experiments?

• Need for sustainable research

• Need for a global approach to evaluation, beyond leaderboards

Sources :
Strubell E, Ganesh A and McCallum A. Energy and Policy Considerations for Deep Learning in NLP.
Proc Annual Meeting of the Association for Computational Linguistics (ACL):3645-3650 (2019).
Ethayarajh K and Jurafsky D Utility is in the Eye of the User: A Critique of NLP Leaderboards. Proc.
Conference on Empirical Methods in Natural Language Processing (EMNLP) 4846-53. (2020).
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How can we measure the impact of NLP experiments?

Sources of CO2 emissions include:
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Can a tool provide CO2 impact measurement?

• Literature search:
I Seed tools: Experiment Impact Tracker, Pyjoules, Carbon

Tracker
I Snowballing in Google Scholar + ArXiv "related papers"

• Selection criteria:
I Freely available
I usable in linux/mac OS
I documented in a scientific publication
I suitable to measure the impact of NLP experiments
I CO2 equivalent measure
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Literature survey

5



85 publications reviewed lead to identification of
6 tools providing C02 impact measurement for NLP

• Online tools
1. Green Algorithms
2. ML CO2 Impact ... newly available as Code Carbon toolkit

• Python toolkits
3. Energy Usage
4. Experiment Impact Tracker
5. Carbon Tracker
6. Cumulator
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Criteria for characterizing tools

• 3 publication criteria
1. Publication year
2. Citations (overall, user studies)

• 7 technical criteria
1. Availability, ease of installation
2. Documentation, version

• 5 configuration criteria
1. Source of carbon intensity and power usage effectiveness values
2. Equipment covered by the measurements

• 2 functional criteria
1. Sources of emissions targetted
2. Type of hardware
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Application to a named entity recognition task

• 2 NER tools
I one that addresses flat entity recognition [Ma and Hovy, 2016]
I one that addresses both flat and nested entity recognition,

introduced by [Yu et al., 2020]

• 2 setups
I GTX 1080 Ti GPUs used on a server
I Tesla V100 GPUs used on a computing facility

• 2 datasets
I QUAERO Broadcast News Extended Named Entity

dataset [Galibert et al., 2010] (French press)
I QUAERO French Med dataset [Névéol et al., 2014]

• 2 measures
I energy consumption
I carbon footprint
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Results

for [Yu et al., 2020] on the French Press corpus
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Why are the results so heterogeneous?

• Carbon intensity varies: CT used the average carbon intensity
for EU-28 in 2017 (294.21 gCO2eq/kWh), while electricityMap
gives around 30 to 40 gCO2eq/kWh

• Hardware options may not be available

• Tools not adapted to a multi-user setting

• Direct measures vs estimations
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What did we learn about measuring CO2 impact in NLP?

• It is a recent but global endeavour

• Tools only account for dynamic use of hardware (1 in 4 sources
of carbon emission)

• Tools provide different measures for the same experiments
I direct measure vs. estimation of computation
I values of Carbon Intensity, Power Usage Effectiveness (PUE)
I some tools are not sensitive enough to capture small impact

• Server seems more carbon intensive than computing facility
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Summary:

• 6 tools to evaluate NLP carbon emissions

• Only account for 1/4 sources of
emissions

• Need to better understand measurements
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