Simulating ASR errors for training SLU systems ANR lium

Edwin Simonnet, Sahar Ghannay, Nathalie Camelin, Yannick Estève

LIUM, Le Mans University, France (firstname.lastname@univ-lemans.fr)

Introduction

Subject:

Simulating automatic speech recognition (ASR) errors from manual transcriptions to improve spoken language understanding (SLU) systems performances

SLU task:

- Automatically extracting semantic concepts and concept/values pairs from ASR transcriptions
- BI (Begin, Inside) annotation : delimits utterances mentioning concepts
- Evaluation in Concept Error Rate (CER) and Concept-Value Error Rate (CVER)

Error Simulation Approach

• Substitution of correct words by similar ones in manual transcriptions • Assumption:

words confusable by ASR are acoustically/linguistically close

• Computing a **confusability measure** between **words** (x,y) from cosine similarities between acoustic (Asim) and linguistic (Lsim) word embeddings:

 $confus(x,y) = LASimInter(\lambda, x, y)$

with

LASimInter(λ , x, y) = (1- λ) × LSim(x, y) + λ × ASim(x, y)

WORD	I	want	to	book	а	room
CONCEPT	command			number	object	
TAG	command-B	command-I	command-I	command-I	number-B	object-B
VALUE	booking			1	room	

Problems:

- Transition from Manual to ASR transcriptions makes SLU performances worse
- SLU systems need to be prepared to ASR errors during their training
- Large automatic transcription corpora needed for training and validation are not always available

$\lambda = \operatorname{argmin} MSE(\forall(hyp, ref) : P(hyp | ref), LASimInter(\lambda, hyp, ref))$

• Applying *confus(x,y)* in order to substitute 20% (cf. ASR WER) of correct words **randomly** by one of its *n* **closest confusable words**

- Noised corpus **Noisy7** with n=7
- Noised corpus **Noisy10** with n=10
- Noised corpus **NoisyNaive** not taking confus(x,y) into account
- Confusability measure used as a feature like ASR confidence measure

Experimental Protocol

MEDIA corpus:

- Touristic information system
- French corpus
- ◆ 22,5k telephone utterances
- ◆ 74 concept labels

LIUM ASR system dedicated to MEDIA:

- Winner on last evaluation campaign (REPERE) on French language
- Kaldispeech recognition toolkit based
- Trained on 145,781 speech segments

SLU Architectures

Conditional Random Fields (CRF):

- Discrete values
- Best performance on MEDIA
- Wapiti toolkit
- Word with **context window**
- No need for validation

Encoder-Decoder Bidirectional Neural Network with a Mechanism of Attention (NN-EDA):

DNN model

segm	ents	train	dev.	test.
	ASR WER	23.7%	23.4%	23.6%

Set of features:

Word dependent features \rightarrow improve understanding performance

• Semantic

• MEDIA specific (cities, hotels...) or more general (figures, months ...)

♦ Syntactic

- lemma, POS tag, word governor and relation with the current word
- Morphological
 - first and last letters ngrams
- ASR confidence measures
 - pap or MS-MLP

- Continuous values
- nmtpy framework
- Inspired from machine translation:
 - words \rightarrow semantic concept tags
- Encoding:
 - **bidirectional NN** encodes the sentence
- Decoding:
 - attention mechanism gives more weight to relevant information
- Proceed validations during training

Results on ASR TEST and conclusions

ASR SYSTEM AVAILABLE DURING TRAINING:

	NN-EDA		CRF	
TRAIN set	CER	CVER	CER	CVER
Manual	31.6	36.2	27.5	31.6
ASR	22.5	28.3	19.9	25.1
Noisy7	23.8	29	22.6	27.7
DoubleNoisy7	23.2	28.8	26.3	31.3
Manual+Noisy7	22.7	28.1	22.6	27.7
Manual+Noisy10	23.3	28.5	23.2	28.3
Manual+NoisyNaive	23.7	28.8	25	30.3
Manual+ASR	20.7	25.8	20.2	25.3
Manual+Noisy7+ASR	20.2	26	29.1	33.0

For Both SLU systems:

- \rightarrow Importance of getting ASR or ASR simulated transcriptions to get training data as close as possible to the test data
 - **ASR > Noisy** (acceptable simulation) **> Manual** (insufficient)
- → Performance on Manual+Noisy corpora: Noisy7 > Noisy10 > NoisyNaive
- Substituting correct words with globally more similar words increases the results Importance of an intelligently generated noise

Neural system only (ASR DEV is used during validation) :

 \rightarrow Benefits from training data augmentation

Manual+Noisy as good as ASR

- Manual+ASR+Noisy>ASR and Manual+ASR>ASR
- \rightarrow Gap between CRF and NN-EDA performances strongly reduced

ASR SYSTEM UNAVAILABLE DURING TRAINING:

		NN-EDA		
TRAIN set	DEV set	CER	CVER	
Manual	Manual	33.9	38.2	
Noisy7	Noisy7	23.5	28.6	
Manual+Noisy7	Noisy7	23.1	28.5	

 Significant improvement by applying ASR error simulation approach • Manual transcriptions of training and development corpora are noised

With no ASR data but noisy data \rightarrow very close results to ASR TRAIN/DEV