

ASR error management for improving spoken language understanding

Edwin Simonnet¹, Sahar Ghannay¹, Nathalie Camelin¹, Yannick Estève¹, Renato De Mori²³

¹LIUM, Le Mans University, France (firstname.lastname@univ-lemans.fr) ²³LIA, University of Avignon, France – McGill University, Montreal, Canada (rdemori@cs.mcgill.ca)

Introduction

Subject:

Automatic speech recognition (ASR) error detection for improving spoken **language understanding** (SLU)

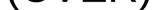
SLU task:

- Automatically extracting semantic concepts and concept/values pairs from ASR transcriptions
- **BI** (Begin, Inside) annotation : **delimits** utterances mentioning concepts
- Evaluation in Concept Error Rate (CER) and Concept-Value Error Rate (CVER)

Approach

- Enriching the set of semantic labels with ASR error labels
 - erroneous hypothesized word supporting a **concept** → **ERROR-C**
 - otherwise (null) → ERROR-N
 - then **replaced** by **null** (usual SLU MEDIA evaluation protocol)
- ASR confidence measures used as additional SLU features for localizing ASR errors

1)Word **posterior probability (pap)** computed with confusion networks 2) Acoustic word embeddings for ASR error detection computed with a Multi-Stream Multi-Layer Perceptron (MS-MLP) architecture [S. Ghannay, INTERSPEECH 2016, Acoustic word embeddings for asr error detection]

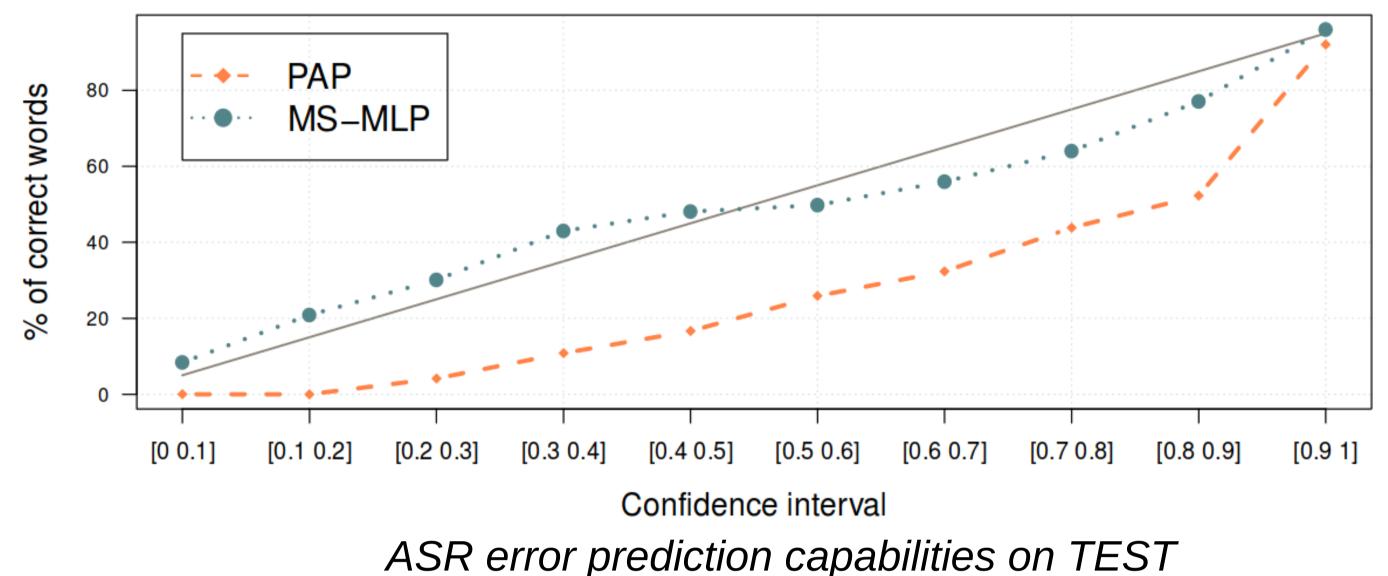


WORD	Ι	want	to	book	а	room
CONCEPT		comm	number	object		
TAG	command-B	command-I	command-I	command-I	number-B	object-B
VALUE		booki	1	room		

Problem:

ASR still makes **errors** involving error-prone interactions between SLU and ASR:

- ASR errors may **affect** the mention of a **concept** and the **value** of a concept instance.
- context features may be **insufficient** or cause **interpretation errors** due to ASR errors



SLU Architectures

Experimental Protocol

MEDIA corpus:

- Touristic information system
- French corpus
- ◆ 22,5k telephone utterances
- ◆ 74 concept labels

LIUM ASR system dedicated to MEDIA:

- Winner on last evaluation campaign (REPERE) on French language
- Kaldispeech recognition toolkit based
- **Trained** on **145,781** speech segments

DEV TEST

Conditional Random Fields (CRF):

- ◆ **Discrete** values
- Best performance on MEDIA
- ♦ Wapiti toolkit
- Word with **context window**

Encoder-Decoder Bidirectional Neural Network with a Mechanism of Attention (NN-EDA):

DNN model

IS	train	dev.	test.	
ASR WER	23.7%	23.4%	23.6%	

Set of features:

Word dependent features \rightarrow **improve understanding** performance

♦ Semantic

• MEDIA specific (cities, hotels...) or more general (figures, months ...)

♦ Syntactic

- lemma, POS tag, word governor and relation with the current word
- Morphological
 - first and last letters ngrams
- ASR confidence measures
 - pap and MS-MLP

- Continuous values
- nmtpy framework
- Inspired from machine translation:
 - words \rightarrow semantic concept tags
- Encoding:
 - **bidirectional NN** encodes the sentence
- Decoding:
 - attention mechanism gives more weight to relevant information

Results on TEST and conclusions

[baseline refers to state of the art CRF baseline issued from S. Hahn, 2011 Comparing stochastic approaches to spoken language understanding in multiple languages]

Joint SLU and ASR error detection tasks (standard SLU evaluation):

Standard SLU task (no error detection):

	Concept			Concept-Value			
	%Error	P	R	%Error	Р	R	
baseline	23.8	-	-	27.3	-	-	
NN-EDA	22.3	0.88	0.84	28.8	0.81	0.77	
CRF	19.9	0.90	0.85	25.1	0.85	0.80	

	Concept			Concept-Value		
	%Error	P R		%Error	Р	R
NN-EDA	22.1	0.90	0.82	27.8	0.84	0.77
CRF	20.6	0.91	0.84	25.4	0.86	0.79

Similar to standard SLU task but better precision

Consensus among CRF and neural systems and their combination:

CRF outperformed NN-EDA with significant improvement over the baseline

Impact of the Confidence Measure (CM):

	without CM		+p	ap	+pap +MS-MLP		
	С	CV	C	CV	С	CV	
CRF	20.9	26.0	20.5	25.7	19.9	25.1	

Confidence and input features contribute to error reductions

	Concept			Concept-Value		
	%Err.	Р	R	%Err.	Р	R
baseline combination	23.1	-	-	27.0	-	-
CRF+NN combination	19.3	0.91	0.85	24.5	0.86	0.80
CRF+NN consensus	-	0.96	0.72	_	0.89	0.68

> Combination: weighted vote between best systems • Provides a **significant error reduction**

> Consensus: agreement among systems (null otherwise) • provides significantly higher precision and a restrained recall reduction • identifies confidence islands and uncertain semantic output segments