UNIVERSITÉ COS PARIS-SACLAY **Neural Networks approaches focused on French Spoken** Limsi Language Understanding: application to MEDIA Evaluation Task

Introduction

SLU task:

- Semantically analyse sentences and identifies text spans that mention semantic concepts.
- BIO tagging : format that allows to delimits mentions in utterances
- Evaluation in Concept Error Rate (CER) and F1-score

Нур	Ι	want	to	book		
Concept	Command					
Taq	Command-B	command-I	command-I	command-I	nur	

Goal:

- Focus on French SLU MEDIA task: one of the most difficult, according to several previous studies
- Explore Neural Networks (NN) approaches focusing of three aspects:
- The NN inputs: more specifically the word embeddings
- Compare French version of BERT against the best setup through different ways
- The comparison against State-of-the-Art approaches.

Experiments

SLU model descriptions:

- . BiLSTM (Bidirectional long short-term memory) architecture
- 2. BiLSTM-CNN (convolutional neural network) architecture that integrates character embeddings using a convolution layer, in addition to the word embeddings
- 3. Fine-tune BERT on SLU task using two french models: CamemBERT and FlauBERT.
- The CamemBERT model is trained on the French part of the OSCAR corpus composed of 138GB of raw text, and FlauBERT on 71GB of heterogeneous French corpora.

MEDIA corpus:

- Touristic information
- French corpus
- 74 concepts
- 17.8k utterances

Christophe Servan², Sahar Ghannay¹, ¹Université Paris-Saclay, CNRS, LIMSI lastname@limsi.fr

room Α Object umber mber-B object-B

Word embeddings training

One of the aim of our experiments is to see whether the update of the embeddings during training of the SLU model (*update*) improves or not the results by mainly varying the data used to train the word embeddings and the hyper-parameters of the SLU model.

- →Use CBOW word embeddings approach (dim=300) using three different corpora setup:
- Small and task-dependent corpus: training set of **MEDIA**
- A huge and out-of-domain corpus: the French Wikipedia dump (**WIKI**) (573 million words, vocabulary size of 923k words)
- Both corpora: noted **WIKI+MEDIA**

Results

Embeddings update

- Evaluate the impact of the update (noted *update*) of CBOW embeddings or their freeze (noted *freeze*) while training of SLU module.
- Experiment different training setups for CBOW (MEDIA, WIKI and **WIKI+MEDIA**), and the BiLSTM number of layers (1, 2 or 3).

Config.	Update			Freeze		
Train	#nb. BiLSTM layers			#nb. BiLSTM layers		
Emb.	1	2	3	1	2	3
MEDIA	84.18	84.18	85.35	72.36	79.57	80.69
WIKI	84.73	85.82	86.47	84.11	86.06	86.40
WIKI +MEDIA	84.84	85.35	86.00	84.08	85.74	86.69

Embeddings trained on MEDIA: update is helpful Embeddings trained on WIKI or WIKI+MEDIA: update of the is not helpful

- Best results obtained using the BiLSTM (3 hidden layers), using one of the
- CBOW embeddings trained on **WIKI** or **WIKI+MEDIA** corpora

Character embeddings evaluation

- Integrates character embeddings as additional features
- Experiment the use of different character embeddings dimensions (30, 50 or 100), and different numbers of BiLSTM layers

	WIKI			WIKI+MEDIA			
#Layer	Character embeddings dimensions						
	30	50	100	30	50	100	
1	84.38	84.59	84.85	84.13	84.47	84.73	
2	85.88	86.43	86.18	86.20	86.75	86.34	
3	87.02	87.05	87.40	87.29	87.01	87.30	

The use of character embeddings as additional features is helpful Both embeddings trained on WIKI and WIKI+MEDIA achieve comparable results

task-dependent corpus seems useless compared to huge and out-ofdomain corpora (wiki)

Sophie Rosset¹ ²QWANT

initial.lastname@gwant.com

Embeddings update

- through two different ways:
- I)Fine-tune BERT on SLU task using two French models: CamemBERT and FlauBERT

BILSTM and BILSTM-CNN architectures, instead of CBOW							
Architecture Embed. Training data		Embed.'s approach	F1	CER			
biRNN-EDA	_	_	_	10.7			
BiLSTM-CNN	WIKI	CBOW (dim=300)†	87.40	9.88			
	VV INI	CBOW (dim=768)	86.80	10.11			
FineTune BERT (i)	oscar 138 GB	CamemBERT-base	89.18	7.93			
	ccnet 135 GB	CamemBERT-base	89.37	7.56			
	heterogeneous corpus 71 GB	FlauBERT-base	89.04	8.13			
BiLSTM	a = 125 C P (ii)	CamemBERT-base (dim=768)	86.59	10.45			
BiLSTM-CNN	CCHEL ISSUD (II)	CamemBERT-base (dim=768)	87.15	10.11			

- results
- to the baseline (biRNN-EDA)
- tags: "nom, chambre-fumeur, objet, ...'
- Achieves comparable results to FlauBERT base model
- used (BiLSTM or BiLSTM-CNN)
- contextual embeddings.

Conclusions

- corpora
- enough general characteristics relevant to SLU task
- Word embeddings trained on both task-dependent corpora and out-ofdomain corpora are useless.
- MEDIA SLU task (F1=89.37 and CER=7.56)

• Evaluate the performance of BERT approaches on the MEDIA task

- II)Integrate the extracted BERT's contextual embeddings to the

I)CamemBERT base model trained on conet data achieves the best

▶ 29.35% of relative improvement in terms of CER reduction in comparison

• outperforms BiLSTM-CNN system and improves the prediction of some

➡II) the use of CamemBERT contextual embeddings achieves competitive results in comparison to CBOW embeddings whatever the architecture

the results with BiLSTM and BiLSTM-CNN architectures reveals the importance of character embeddings, even when they are combined with

Word embeddings need to be updated when trained on task-dependent

Word embeddings trained on huge and out-of-domain data can captured

French BERT model (CamemERT) achieved best results on French