Hollow Man Hollow Man Handy Devised Basic Hollow Man Hollow Ma Sahar Ghannay, Yannick Estève and Nathalie Camelin LIUM- Le Mans University, France Introduction Experiments: Integration of global information 1. Continuous sentence representations Error detection • Supervised machine learning task General embeddings Task specific embeddings • Detection of anomalies in automatic transcriptions: Slightly erroneous/very erroneous - from linguistic or semantic levels Classifier on sat cat Softmax - from acoustic level Emb **Two fully** connected Main goal layers • Modeling automatic speech recognition (ASR) errors at the sentence level through: Two Paragraph Matrix ------>

- Continuous sentence representations (*embeddings*) specific to ASR error detection task
- Probabilistic contextuel model

In addition, we will compare our approaches to bidirectional long short-term memory (BLSTM) architecture previously published.

2. List of features

convolution

and pooling

lavers

Performance of sentence embeddings

Paragraph

Corpus	Sentence	Label Error			Global
	Embed.	P	R	F	CER
	- (Sys2)	0.72	0.60	0.65	9.38
Dev	Emb_{DBOW}	0.73	0.58	0.65	9.36
	Emb_{CNN}	0.72	0.60	0.65	<u>9.26</u>
	- (<i>Sys2</i>)	0.70	0.61	0.65	7.75
Test	Emb_{DBOW}	0.72	0.57	0.64	7.72
	Emb_{CNN}	0.72	0.58	0.64	<u>7.69</u>

Integration of sentence embeddings improves the results Task specific sentence embeddings outperforms generic ones

• **Posterior probabilities**

- Lexical features: word length, existence of 3-grams in the ML
- Syntactic features: POS tag, dependency label, word governor
- **Prosodic features:** number and average duration of phonemes, duration of previous and next pause, average f0 of the word, *etc*.
- Word: linguistic and acoustic embeddings

Experiments

1. Experimental data Automatic transcriptions of Etape Corpus

	ref	hyp	
Train	349K	316K	25.3
Dev	$54\mathrm{K}$	50K	24.6
Test	58K	53K	21.9

#words

#words

WER

2. Baseline results

Sys1: all features described above excepting the prosodic ones Sys2: all features

Name

Corpus	System	Label Error			Global
	System	Р	R	F	CER

2. Probabilistic contextual model (PCM)

- Smoothing of the classification results at the sentence level
- Re-scoring of a graph of labels by applying an n-order probabilistic model of error distribution
- Find the sequence label S that maximizes:

 $\overline{S} = \arg\max \prod c(e_i)^{\lambda} \times P(e_i | e_{i-2}, e_{i-1}, e_{i+1}, e_{i+2})$

Cornus	System	L	Global		
Corpus		Р	R	F	CER
Dev	Sys2-PCM	0.73	0.56	0.65	9.31
	Sys3-PCM	0.73	0.60	0.65	9.23
Test	Sys2-PCM	0.72	0.59	0.65	7.67
	Sys3-PCM	0.73	0.57	0.64	7.69

- + PCM improves Sys2 results: global information is brought
- + Sys3 already contains global information: no real gain with PCM

3. BLSTM architecture

• BLSTM composed of two hidden layers (512 hidden units each) • Includes the Sys2 features

Corpus	System	Label Error	BLSTM <i>vs</i> . Sys

Dev	Sys1	0.71	0.58	0.64	9.53
	Sys2	0.71	0.60	0.65	<u>9.38</u>
Test	Sys1	0.70	0.59	0.64	7.94
	Sys2	0.70	0.61	0.65	<u>7.75</u>

prosodic features improve all the results

Average ASR error span analysis of Sys2 outputs:

Corpus		Average span	Standard deviation
Train	Ground truth	3.03	1.72
Dev		3.24	2.15
Dev	Predictions	2.82	1.28
	Correct predictions	2.66	1.05

→ Average span of Sys2 is too small in comparison to the ground truth

