Enriching confusion networks for post-processing

Sahar Ghannay, Yannick Estève, Nathalie Camelin

LIUM, IICC, Le Mans University

SLSP 2017, Le Mans, France

```
1. Introduction

\section*{INTRODUCTION}
*Automatic speech recognition (ASR) errors are still unavoidable * Impact of ASR errors
- Information retrieval,
+ Speech to speech translation,
+ Spoken language understanding,
+ Subtitling
+ Etc.

\section*{INTRODUCTION}
*Detection and correction of ASR errors
+ Improve recognition accuracy: using post processing of ASR outputs [s. Stoyanchev et. al 2012, E. Pincus et. al 2014]
+ Decrease word error rate using of confusion networks (CN) [L. Mangu et.al 2000]
+ Correct erroneous words in CNs [r.fusayasu et.al 2015]
+ Improve post-processing of ASR outputs using CNs
- Propose alternative word hypotheses when ASR outputs are corrected by a human on post-edition
- CN bins don't have a fixed length and sometimes contain one or two words
- Number of alternatives to correct a misrecognized word is very low

\section*{CONTRIBUTIONS}
- Approach of CN enrichment
+ Assumption: words in the same bin should be close in terms of acoustics and /or linguistics
+ New similarity measure computed from acoustic and linguistic word embeddings
- Evaluation
+ Predict potential ASR errors for rare words
- Enrich CN to improve post-edition of automatic transcriptions
- Propose semantically relevant alternative words to ASR outputs for Spoken Langage Understanding (SLU) system
```

1. Introduction

WORD EMBEDDINGS

ACOUSTIC EMBEDDINGS

*f: speech segments $\rightarrow \mathbb{R}^{n}$ is a function for mapping speech segments to low-dimensional vectors.
\rightarrow words that sound similar $=$ neighbors in the continuous space
*Successfully used in:

+ Query-by-example search system [levin et al, 2013, kamper et al, 2015]
+ ASR lattice re-scoring system [s. Bengio and Heiglod 2014]
+ ASR Error detection [s. Ghannay et al, 2016]

WORD EMBEDDINGS
 Acoustic embeddings-Architecture

Approach inspired by [Bengio and Heiglod 2014]

LINGUISTIC EMBEDDINGS

COMBINED WORD EMBEDDINGS

Skip-gram [T. Mikolov et al. 2013]

w2vf-deps [O. Levy et al. 2014]

GloVe [J. Pennington et al. 2014]

* building a co-occurrence matrix
* estimating continuous representations of the words

Evaluation and combination of word embeddings [S.Ghannay et al. SLSP 2015, LREC 2016]

* ASR error detection
* NLP tasks
* Analogical and similarity tasks
- Combination of word embeddings through PCA yields good results on analogical and similarity task

Principal Component Analysis

2. Word embeddings
3. Similarity measure
4. Experiments
5. Conclusion

SIMILARITY MEASURE TO ENRICH CONFUSION NETWORKS (I/2)

* Enriching confusing network by adding nearest neighbors
+ Based on cosine similarities (Asim, Lsim) of acoustic and linguistic embeddings

$$
L A_{\text {SimInter }}(\lambda, x, y)=(1-\lambda) \times L_{\text {Sim }}(x, y)+\lambda \times A_{\text {Sim }}(x, y)
$$

+ Optimisation of λ value:

$$
\hat{\lambda}=\operatorname{argmin}_{\lambda} M S E\left(\forall(h, \bar{r}): P(h \mid \bar{r}), L A_{\text {SimInter }}(\lambda, h, \bar{r})\right)
$$

※ Nearest neighbors of the hypothesis word portables

Nearest neighbors of the French word 'portables',	
pronounced \backslash postabl \backslash	

telephones, computers, portable, portable

\backslash telefon \backslash \backslash овdinatoes \backslash \backslash postabl \backslash \backslash poвtatif \backslash\end{array}\right|\)

EXPERIMENTS

EXPERIMENTAL SETUP

* Training data of acoustic embeddings
+ 488 hours of French Broadcast news (ESTERI, ESTER2 et EPAC)
+ Vocabulary : 45k words and classes of homophones
+ Occurrences : 5.75 millions
* Training data of the linguistic word embeddings

Corpus composed of 2 billions of words:

+ Articles of the French newspaper "Le Monde",
+ French Gigaword corpus,
+ Articles provided by Google News,
+ Manual transcriptions: 400 hours of French broadcast news.

EXPERIMENTS

EXPERIMENTAL SETUP

* Experimental data
+ ETAPE corpus of French broadcast news shows
- Enriched with automatic transcriptions generated by the LIUM ASR system
+ List of substitution errors:
SubTrain: estimate the interpolation coefficient
Subtest: evaluate the performance of the Confusion Network (CN) enrichment approach

Name	WER	Sub.Err.	\#sub. Error pairs (ref, hyp)
Train	25.3	10.3	30678
Test	21.9	8.3	4678

Description of the experimental corpus

- CN bins: Percentage of confusion network bins according to

EXPERIMENTS

TASKS AND EVALUATION SCORE

*Two Evaluation tasks

+ Task I: prediction of errors for rare words (a = ref, $b=$ hyp)
+ Task 2: post processing of ASR errors (a = hyp, $b=$ ref)
- Given a word pair (a, b) in a list L of m substitution errors
- looking for b in list N of the n nearest words of a based on the similarity measure Γ : $A_{\text {sim }}$ or $L_{\text {sim, or }} L A_{\text {siminter }}$
* Evaluation score: $S(\Gamma, n)=\frac{\sum_{i=1}^{m} f(i, \Gamma, n) \times \#\left(a_{i}, b_{i}\right)}{\sum_{i=1}^{m} \#\left(a_{i}, b_{i}\right)}$

$$
f(i, \Gamma, n)=\left\{\begin{array}{l}
1 \text { if } b_{i} \subset N\left(a_{i}, \Gamma, n\right) \\
0 \text { otherwise }
\end{array}\right.
$$

1. Introduction	Experimental setup
2. Word embeddings	Tasks and evaluation score
3. Similarity measure	Experimental results
4.Experiments	
5. Conclusion	

EXPERIMENTS

EXPERIMENTAL RESULTS

* Prediction of potential error for rare words
+ List of rare words : 538 pairs of substitution errors
+ Lists: ListsimL, ListsimA, Listsiminter of nearest neighbors to the reference word (r)

1. Introduction	Experimental setup
2. Word embeddings	Tasks and evaluation score
3. Similarity measure	Experimental results
4.Experiments	
5. Conclusion	

EXPERIMENTS

EXPERIMENTAL RESULTS

* The similarity LAsiminter is used to:
+ Enrich confusion networks bins with nearest neighbors of hypothesis (hyp) word Evaluation on post processing of automatic transcriptions

	ListcN	ListerichCN
$\mathrm{P} @ 6$	0,17	$0,21(+23,5 \%)$

1. Introduction	Experimental setup
2. Word embeddings	
3. Similarity measure	
4.Experiments	
5. Conclusion	Tasks and evaluation score

EXPERIMENTS

EXPERIMENTAL RESULTS

*The similarity LAsiminter is used to:

- Expand the automatic transcriptions (I-best) provided for a spoken language understanding (SLU) system -> build confusion networks

Task: correction of semantically relevant erroneous word
Data: French MEDIA corpus (I257 dialogues for hotel reservation)
Evaluation corpus: I204 occurrences of semantically relevant erroneous words

	Enrich I-best
P@6	0,206

*Take benefit from linguistic and acoustic embeddings:

+ Enrich confusion networks (CN)
- Improve post-processing
* Compute a similarity function LAsiminter optimized to ASR error correction
+ Relevant lists of nearest neighbors linguistically and acoustically
+ Enrich CN and increase the potential correction of erroneous words by 23\%
+ Propose 6 alternative words to I-best hypotheses carrying on semantics to be exploited by the SLU module
- These alternatives contain the correct words in 20.6% of the cases

Thankyou!

Contact

sahar.ghannay@univ-lemans.fr

