
1LIUM-University of Le Mans
2Aix-Marseille Universite ́, CNRS, LIF UMR 7279, 13000, Marseille, France

2 	 1, 2 , è 	

, , 	

Word Embeddings:
• Successfully used in several Natural Language Processing

(NLP) and speech processing tasks
• Different approaches are introduced to calculate them through

neural networks
• Their evaluation needs to be more studied

Goal:
• Rigorous comparison of the performances of different kinds of

word embeddings on NLP, analogical and similarity tasks.
• Word embeddings combination

 Looking for the most effective word embeddings!

Conclusions

The combination of w2vf-deps, Skip-gram and GloVe
yields significant improvements.

Building an effective word embedding can be reached by
the combination of the efficient embeddings in each task
through PCA or concatenation

+

Word embeddings evaluation and combination

Word Embeddings

CBOW Skip-gram

• Word embedding
– A low-dimensional continuous vector representation for each word
– Captures the word meaning in a semantic space

• Common neural network based word embedding approaches
– SENNA embedding
– NN/RNN language model based embedding
– CBOW & Skip-gram

Word Embedding

72

𝑓 𝑐𝑎𝑡 = 𝑓 𝑐𝑎𝑡 =

The index of “cat” in
the vocabulary

one-hot
word vector

word embedding
vector

GloVe

f: words→ ℝn is a function for mapping words to low-
dimensional vectors (e.g. 200)

Definition:

23/03/2016 18:24Deep Learning, NLP, and Representations - colah's blog

Page 2 sur 10http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/

Modular Network to determine

if a 5-gram is ‘valid’ (From

Bottou (2011)

(http://arxiv.org/pdf/1102.1808v3.pdf))

Word Embeddings

I’d like to start by tracing a particularly interesting strand of deep learning research: word embeddings. In my
personal opinion, word embeddings are one of the most exciting area of research in deep learning at the
moment, although they were originally introduced by Bengio, et al. more than a decade ago. Beyond that, I
think they are one of the best places to gain intuition about why deep learning is so effective.

A word embedding is a paramaterized function mapping words in some language to high-
dimensional vectors (perhaps 200 to 500 dimensions). For example, we might find:

(Typically, the function is a lookup table, parameterized by a matrix, , with a row for each word:
.)

 is initialized to have random vectors for each word. It learns to have meaningful vectors in order to
perform some task.

For example, one task we might train a network for is predicting whether a 5-gram (sequence of five words) is
‘valid.’ We can easily get lots of 5-grams from Wikipedia (eg. “cat sat on the mat”) and then ‘break’ half of
them by switching a word with a random word (eg. “cat sat song the mat”), since that will almost certainly
make our 5-gram nonsensical.

The model we train will run each word in the 5-gram through to get a
vector representing it and feed those into another ‘module’ called which
tries to predict if the 5-gram is ‘valid’ or ‘broken.’ Then, we’d like:

In order to predict these values accurately, the network needs to learn good
parameters for both and .

Now, this task isn’t terribly interesting. Maybe it could be helpful in
detecting grammatical errors in text or something. But what is extremely
interesting is .

(In fact, to us, the entire point of the task is to learn . We could have done several other tasks – another
common one is predicting the next word in the sentence. But we don’t really care. In the remainder of this
section we will talk about many word embedding results and won’t distinguish between different approaches.)

One thing we can do to get a feel for the word embedding space is to visualize them with t-SNE
(http://homepage.tudelft.nl/19j49/t-SNE.html), a sophisticated technique for visualizing high-dimensional
data.

t-SNE visualizations of word embeddings. Left: Number Region; Right: Jobs

Region. From Turian et al. (2010)

(http://www.iro.umontreal.ca/~lisa/pointeurs/turian-wordrepresentations-

acl10.pdf), see complete image (http://metaoptimize.s3.amazonaws.com/cw-

embeddings-ACL2010/embeddings-mostcommon.EMBEDDING_SIZE=50.png).

3

W : words → ℝn

W(‘‘cat ") = (0.2, -0.4, 0.7, . . .)

W(‘‘mat ") = (0.0, 0.6, -0.1, . . .)

θ
() =Wθ wn θn

W

W
R

R(W(‘‘cat "), W(‘‘sat "), W(‘‘on "), W(‘‘the "), W(‘‘mat ")) = 1

R(W(‘‘cat "), W(‘‘sat "), W(‘‘song "), W(‘‘the "), W(‘‘mat ")) = 0

W R

W

W

Visualization:

 Number Region Jobs Region

 t-SNE visualizations of word embeddings

w2vf-deps

w
i

w
i+1

w
i-1

w
i-2

w
i+2

w
i+1

w
i-1

w
i-2

w
i+2

w
i

Approaches:

Introduction

CSLM

+
+
+

w2vf-deps is the best for NLP tasks
Skip-gram is the best for similarity task
GloVe is the best for analogical task

Benchmark tasks
1. NLP Tasks:

3. Analogical task:
Answering questions:

Semantic: Paris:France → Rome:?
Syntactic: bad:worse → big:?

Combined word embeddings

2. Performance of combined word embeddings:

1. Combination approaches:

1) Simple concatenation (Concat) 600-dGloVew2vf-deps Skip-gram

2) Principal component Analysis
(PCA)

Correlation
matrix

VkConcat

Concat
VkX =

Combined
word

embeddings

New
coordinate

system
(k=200)

PCA

200-d

600-d600-d

600-d 600-d
600-d

600-dN
 w

ords
N

 w
ords

N
 w

ords

200-d

3) Auto-encoder

Concat

200-d Combined word
embeddings

Concat

Experiments

NLP tasks:
Neural architecture:

Analogical task:
Evaluation sets:
• 8,869 semantic
• 10,675 syntactic

Similarity task:
Evaluation sets:
• WordSim353
• RW
• MEN

Data: Gigaword corpus
composed of 4 billion words
Vocabulary size: 239K words

Word embeddings:

1. Setup:

2. Results:

Wi-2 Wi-1 Wi Wi+1 Wi+2

H1-L H1-W H1-R

H2

output

w
i�1

w
i�2

w
i�3

Best-AutoE achieves best results on NLP tasks

2. Similarity task

How similar is pizza to pasta?
How related is pizza to Italy?

 Similarity
 Relatedness

Measuring:

Brief Article

The Author

May 18, 2016

Embeddings
NLP Tasks Similarity Task Analogical

POS CHK NER MENT WS353 RW MEN Task
Acc. F1 Spearman’s ⇢ Acc.

CBOW 96.01 90.48 78.32 55.49 59.0 46.5 60.9 57.2
Skip-gram 96.43 89.64 77.65 57.80 55.8 50.2 66.2 62.3
GloVe 95.79 86.90 76.45 54.49 53.3 41.0 66.0 65.5
CSLM 96.24 90.11 76.20 57.34 47.8 43.4 48.2 27.4

w2vf-deps 96.66 92.02 79.37 58.06 52.3 43.5 55.7 42.70

Table 1: Performance of word embeddings on the NLP tasks.

1

Brief Article

The Author

May 18, 2016

Embeddings
NLP Tasks Similarity Task Analogical

POS CHK NER MENT WS353 RW MEN Task
Acc. F1 Spearman’s ⇢ Acc.

CBOW 96.01 90.48 78.32 55.49 59.0 46.5 60.9 57.2
Skip-gram 96.43 89.64 77.65 57.80 55.8 50.2 66.2 62.3
GloVe 95.79 86.90 76.45 54.49 53.3 41.0 66.0 65.5
CSLM 96.24 90.11 76.20 57.34 47.8 43.4 48.2 27.4

w2vf-deps 96.66 92.02 79.37 58.06 52.3 43.5 55.7 42.70

Table 1: Performance of word embeddings on the NLP tasks.

Dim. Embeddings
NLP Tasks Similarity Task Analogical

POS CHK NER MENT WS353 RW MEN Task
Acc. F1 Spearman’s ⇢ Acc.

600 Best-Concat 96.67 91.88 81.06 58.20 57.0 48.6 69.4 71.4

200
Best-PCA 96.45 90.13 79.66 60.22 57.9 49.5 71.3 70.7
Best-AutoE 96.64 91.35 80.43 60.39 55.8 44.6 64.9 62.0

Table 2: Performance of combined word embeddings on the NLP tasks.

1

⁃ Part-of-speech tagging (POS): syntactic roles (noun, adverb, etc.)
⁃ Chunking (CHK): syntactic constituent (noun phrase, verb phrase, etc.)
⁃ Named Entity recognition (NER): person, company, etc.
⁃ Mention detection (MENT): begin, inside, and outside

 1. Co-occurence matrix X
from the training set

 2. Factorize X to get vectors

Low-
level

Mid-
level

Hight-
level

Trainable
Cassifier

Predictio
n

+
—

Let's imagine at training step we observe the Jrst training case above, where the goal is to

predict from . We select number of noisy (contrastive) examples by

drawing from some noise distribution, typically the unigram distribution, . For simplicity

let's say and we select as a noisy example. Next we compute the loss for

this pair of observed and noisy examples, i.e. the objective at time step becomes

.

The goal is to make an update to the embedding parameters to improve (in this case,

maximize) this objective function. We do this by deriving the gradient of the loss with respect to

the embedding parameters , i.e. (luckily TensorFlow provides easy helper functions

for doing this!). We then perform an update to the embeddings by taking a small step in the

direction of the gradient. When this process is repeated over the entire training set, this has the

effect of 'moving' the embedding vectors around for each word until the model is successful at

discriminating real words from noise words.

We can visualize the learned vectors by projecting them down to 2 dimensions using for

instance something like the t-SNE dimensionality reduction technique. When we inspect these

visualizations it becomes apparent that the vectors capture some general, and in fact quite

useful, semantic information about words and their relationships to one another. It was very

interesting when we Jrst discovered that certain directions in the induced vector space

specialize towards certain semantic relationships, e.g. male-female, gender and even country-

capital relationships between words, as illustrated in the Jgure below (see also for example

Mikolov et al., 2013).

This explains why these vectors are also useful as features for many canonical NLP prediction

tasks, such as part-of-speech tagging or named entity recognition (see for example the original

work by Collobert et al., 2011 (pdf), or follow-up work by Turian et al., 2010).

the quick num_noise

num_noise=1 sheep

bad

worse

bigger

big

man

woman

king
queen

king -Queen = Man-Woman

Paris-France+Italy=Rome
King �Queen ⇡ Man�Woman

Paris� France+ Italy ⇡ Rome

 Word embedding
– A low-dimensional continuous vector representation for each word
– Captures the word meaning in a semantic space

200-d

S
kip-gram

G
loV

e
w

2vf-deps

S
kip-gram

G
loV

e
w

2vf-deps

2. Principal Component Analysis (PCA)
✤ Convert correlated variables into uncorrelated variables called principal

components.

Word embeddings combination (2/3)

GTW
correlation

 matrix

k (100 ou 200)

new coordinate
system

Vk GTW X Vk =

Combined embeddings

300

N
words

300

300
ACP

300

300

300

N
words

K

300

K

N
words

Introduction Word embeddings ASR error detection system Experiments Conclusions

GTW-PCA

/2412

1. NLP Tasks:
⁃ Part-of-speech tagging (POS): syntactic roles (noun, adverb)

⁃ Chunking (CHK): syntactic constituent (noun phrase, verb phrase)

⁃ Named Entity recognition (NER): person, company, etc.

⁃ Mention detection (MENT): begin, inside,outside.

Let's imagine at training step we observe the Jrst training case above, where the goal is to

predict from . We select number of noisy (contrastive) examples by

drawing from some noise distribution, typically the unigram distribution, . For simplicity

let's say and we select as a noisy example. Next we compute the loss for

this pair of observed and noisy examples, i.e. the objective at time step becomes

.

The goal is to make an update to the embedding parameters to improve (in this case,

maximize) this objective function. We do this by deriving the gradient of the loss with respect to

the embedding parameters , i.e. (luckily TensorFlow provides easy helper functions

for doing this!). We then perform an update to the embeddings by taking a small step in the

direction of the gradient. When this process is repeated over the entire training set, this has the

effect of 'moving' the embedding vectors around for each word until the model is successful at

discriminating real words from noise words.

We can visualize the learned vectors by projecting them down to 2 dimensions using for

instance something like the t-SNE dimensionality reduction technique. When we inspect these

visualizations it becomes apparent that the vectors capture some general, and in fact quite

useful, semantic information about words and their relationships to one another. It was very

interesting when we Jrst discovered that certain directions in the induced vector space

specialize towards certain semantic relationships, e.g. male-female, gender and even country-

capital relationships between words, as illustrated in the Jgure below (see also for example

Mikolov et al., 2013).

This explains why these vectors are also useful as features for many canonical NLP prediction

tasks, such as part-of-speech tagging or named entity recognition (see for example the original

work by Collobert et al., 2011 (pdf), or follow-up work by Turian et al., 2010).

the quick num_noise

num_noise=1 sheep

Paris

France

Italy

Rome

Man

Woman

King
Queen

Let's imagine at training step we observe the Jrst training case above, where the goal is to

predict from . We select number of noisy (contrastive) examples by

drawing from some noise distribution, typically the unigram distribution, . For simplicity

let's say and we select as a noisy example. Next we compute the loss for

this pair of observed and noisy examples, i.e. the objective at time step becomes

.

The goal is to make an update to the embedding parameters to improve (in this case,

maximize) this objective function. We do this by deriving the gradient of the loss with respect to

the embedding parameters , i.e. (luckily TensorFlow provides easy helper functions

for doing this!). We then perform an update to the embeddings by taking a small step in the

direction of the gradient. When this process is repeated over the entire training set, this has the

effect of 'moving' the embedding vectors around for each word until the model is successful at

discriminating real words from noise words.

We can visualize the learned vectors by projecting them down to 2 dimensions using for

instance something like the t-SNE dimensionality reduction technique. When we inspect these

visualizations it becomes apparent that the vectors capture some general, and in fact quite

useful, semantic information about words and their relationships to one another. It was very

interesting when we Jrst discovered that certain directions in the induced vector space

specialize towards certain semantic relationships, e.g. male-female, gender and even country-

capital relationships between words, as illustrated in the Jgure below (see also for example

Mikolov et al., 2013).

This explains why these vectors are also useful as features for many canonical NLP prediction

tasks, such as part-of-speech tagging or named entity recognition (see for example the original

work by Collobert et al., 2011 (pdf), or follow-up work by Turian et al., 2010).

the quick num_noise

num_noise=1 sheep

Paris

France

Italy

Rome

Man

Woman

King
Queen

King �Queen ⇡ Man�Woman

Paris� France+ Italy ⇡ Rome

600-d
600-d

Embedding
layer

GloVeSkip-gramw2vf-deps

200-d

GloVeSkip-gramw2vf-deps

Correlation
matrix

Vk
Concat

Concat
Vk

X =
Combined

word
embeddings

New
coordinate

system
(k=200)

PCA

200-d

600-d 600-d600-d

600-d 600-d
600-d

600-d

N
 w

ord
s

N
 w

ord
s

N
 w

ord
s

200-d

MEN

contains only words that appear as image labels in the ESP-Game and MIRFLICKR-1M16 collections, thus ensuring full coverage to researchers that train visual models from these resources. MEN consists of 3,000 word pairs with [0, 1]-normalized semantic relatedness
ratings provided by Amazon Mechanical Turk workers (via the CrowdFlower17 interface). For example, beach/sand has a MEN score of 0.96, bakery/zebra received a 0 score.

:-(

Let's imagine at training step we observe the Jrst training case above, where the goal is to

predict from . We select number of noisy (contrastive) examples by

drawing from some noise distribution, typically the unigram distribution, . For simplicity

let's say and we select as a noisy example. Next we compute the loss for

this pair of observed and noisy examples, i.e. the objective at time step becomes

.

The goal is to make an update to the embedding parameters to improve (in this case,

maximize) this objective function. We do this by deriving the gradient of the loss with respect to

the embedding parameters , i.e. (luckily TensorFlow provides easy helper functions

for doing this!). We then perform an update to the embeddings by taking a small step in the

direction of the gradient. When this process is repeated over the entire training set, this has the

effect of 'moving' the embedding vectors around for each word until the model is successful at

discriminating real words from noise words.

We can visualize the learned vectors by projecting them down to 2 dimensions using for

instance something like the t-SNE dimensionality reduction technique. When we inspect these

visualizations it becomes apparent that the vectors capture some general, and in fact quite

useful, semantic information about words and their relationships to one another. It was very

interesting when we Jrst discovered that certain directions in the induced vector space

specialize towards certain semantic relationships, e.g. male-female, gender and even country-

capital relationships between words, as illustrated in the Jgure below (see also for example

Mikolov et al., 2013).

This explains why these vectors are also useful as features for many canonical NLP prediction

tasks, such as part-of-speech tagging or named entity recognition (see for example the original

work by Collobert et al., 2011 (pdf), or follow-up work by Turian et al., 2010).

the quick num_noise

num_noise=1 sheep

Paris

France

Italy

Rome

Man

Woman

King
Queen

<>

Let's imagine at training step we observe the Jrst training case above, where the goal is to

predict from . We select number of noisy (contrastive) examples by

drawing from some noise distribution, typically the unigram distribution, . For simplicity

let's say and we select as a noisy example. Next we compute the loss for

this pair of observed and noisy examples, i.e. the objective at time step becomes

.

The goal is to make an update to the embedding parameters to improve (in this case,

maximize) this objective function. We do this by deriving the gradient of the loss with respect to

the embedding parameters , i.e. (luckily TensorFlow provides easy helper functions

for doing this!). We then perform an update to the embeddings by taking a small step in the

direction of the gradient. When this process is repeated over the entire training set, this has the

effect of 'moving' the embedding vectors around for each word until the model is successful at

discriminating real words from noise words.

We can visualize the learned vectors by projecting them down to 2 dimensions using for

instance something like the t-SNE dimensionality reduction technique. When we inspect these

visualizations it becomes apparent that the vectors capture some general, and in fact quite

useful, semantic information about words and their relationships to one another. It was very

interesting when we Jrst discovered that certain directions in the induced vector space

specialize towards certain semantic relationships, e.g. male-female, gender and even country-

capital relationships between words, as illustrated in the Jgure below (see also for example

Mikolov et al., 2013).

This explains why these vectors are also useful as features for many canonical NLP prediction

tasks, such as part-of-speech tagging or named entity recognition (see for example the original

work by Collobert et al., 2011 (pdf), or follow-up work by Turian et al., 2010).

the quick num_noise

num_noise=1 sheep

pommes

pomme

voiture

voitures

homme

femme

roi
reine

o1 o2

o1 o2

o1 o26=

Let's imagine at training step we observe the Jrst training case above, where the goal is to

predict from . We select number of noisy (contrastive) examples by

drawing from some noise distribution, typically the unigram distribution, . For simplicity

let's say and we select as a noisy example. Next we compute the loss for

this pair of observed and noisy examples, i.e. the objective at time step becomes

.

The goal is to make an update to the embedding parameters to improve (in this case,

maximize) this objective function. We do this by deriving the gradient of the loss with respect to

the embedding parameters , i.e. (luckily TensorFlow provides easy helper functions

for doing this!). We then perform an update to the embeddings by taking a small step in the

direction of the gradient. When this process is repeated over the entire training set, this has the

effect of 'moving' the embedding vectors around for each word until the model is successful at

discriminating real words from noise words.

We can visualize the learned vectors by projecting them down to 2 dimensions using for

instance something like the t-SNE dimensionality reduction technique. When we inspect these

visualizations it becomes apparent that the vectors capture some general, and in fact quite

useful, semantic information about words and their relationships to one another. It was very

interesting when we Jrst discovered that certain directions in the induced vector space

specialize towards certain semantic relationships, e.g. male-female, gender and even country-

capital relationships between words, as illustrated in the Jgure below (see also for example

Mikolov et al., 2013).

This explains why these vectors are also useful as features for many canonical NLP prediction

tasks, such as part-of-speech tagging or named entity recognition (see for example the original

work by Collobert et al., 2011 (pdf), or follow-up work by Turian et al., 2010).

the quick num_noise

num_noise=1 sheep

Paris

France

Italy

Rome

Man

Woman

King
Queen

