LA Confidential Colater Damage Field (LA Confidentia) Colater Damage F Aix*Marseille Second hard 295, guilded and 295, guilde Université Maine and Nathalie Camelin¹ ¹LIUM-University of Le Mans ²Aix-Marseille Universite, CNRS, LIF UMR 7279, 13000, Marseille, France Introduction Experiments

Word Embeddings:

- Successfully used in several Natural Language Processing (NLP) and speech processing tasks
- Different approaches are introduced to calculate them through neural networks
- Their evaluation needs to be more studied Goal:
 - Rigorous comparison of the performances of different kinds of word embeddings on NLP, analogical and similarity tasks.

Setup: 1.

Word embeddings:

Data: Gigaword corpus composed of 4 billion words Vocabulary size: 239K words

NLP tasks:

Neural architecture:

Analogical task:

Evaluation sets:

- 8,869 semantic
- 10,675 syntactic

Similarity task:

Evaluation sets:

- WordSim353
- RW

Combined word

embeddings

600-d

GloVe

Concat

200-d

Concat

Analogical

Task

Acc.

57.2

62.3

65.5

27.4

42.70

Approaches:

- Part-of-speech tagging (POS): syntactic roles (noun, adverb, *etc.*)

- 2) Principal component Analysis 3) Auto-encoder (PCA) New Correlation coordinate N words Concat PCA matrix system (k=200)200-d XVk Concat Combined word embeddings
 - 2. *Performance of combined word embeddings:*

Dim.	Embeddings	NLP Tasks				Similarity Task			Analogica
		POS	CHK	NER	MENT	WS353	RW	MEN	Task
		Acc. F1			Spearman's ρ			Acc.	
600	Best-Concat	96.67	91.88	81.06	58.20	57.0	48.6	<u>69.4</u>	71.4
200	Best-PCA	96.45	90.13	79.66	$\underline{60.22}$	57.9	49.5	<u>71.3</u>	<u>70.7</u>
200	Best-AutoE	96.64	91.35	<u>80.43</u>	60.39	55.8	44.6	64.9	62.0
	Best-AutoE	96.64	91.35	<u>80.43</u>	$\underline{60.39}$	55.8	44.6	64.9	62.0

- Chunking (CHK): syntactic constituent (noun phrase, verb phrase, etc.) - Named Entity recognition (NER): person, company, etc.
- Mention detection (MENT): begin, inside, and outside

2. Similarity task

Measuring: Similarity Relatedness

How similar is pizza to pasta? How related is pizza to Italy?

3. Analogical task: France Answering questions: Semantic: Paris:France → Rome:? Syntactic: bad:worse \rightarrow big:? Rome

Conclusions w2vf-deps is the best for NLP tasks Skip-gram is the best for similarity task + The combination of w2vf-deps, Skip-gram and GloVe yields significant improvements. - Best-AutoE achieves best results on NLP tasks Building an effective word embedding can be reached by the combination of the efficient embeddings in each task through PCA or concatenation