

Acoustic word embeddings for ASR error detection

Sahar Ghannay, Yannick Estève, Nathalie Camelin and Paul Deléglise

LIUM, IICC, Université du Maine Le Mans, France

INTERSPEECH 2016, SAN FRANCISCO

INTRODUCTION

- Why error detection is still relevant ?
 - + MGB 2015 challenge results for ASR task on BBC data

	Best Sys	CRIM/ LIUM	Sys I	Sys2	Sys3	LIUM	Sys4	Sys5	Sys6	Sys7	Sys8	Sys9
Overall WER(%)	23.7	26.6	27.5	27.8	28.8	30.4	30.9	31.2	35.5	38.0	38.7	40.8

- The ASR errors may due to the variability:
 - + Acoustic conditions, speaker, language style, etc.
- Impact of ASR errors:
 - + Information retrieval,
 - Speech to speech translation,
 - + Spoken language understanding,
 - Named entity recognition,
 - + Etc.

Related WORK (1/2) ASR error detection

- * Approaches based on Conditional Random Field (CRF):
 - + OOV detection [C. Parada et al. 2010]
 - Contextual information
 - + Errors detection [F. Béchet & B. Favre 2013]
 - ASR based, lexical and syntactic features
 - + Errors detection at word/utterance level [Stoyanchev et al. 2012]
 - Syntactic and prosodic features
- * Approach based on neural network:
 - ◆ MLP for errors detection [T.Yik-Cheung et al. 2014]
 - Complementary ASR systems, RNNLM, confusion network
 - + MLP furnished by a stacked auto-encoders for errors detection [S. Jalalvand et al. 2015]
 - Confusion network, textual features
 - + MLP-Multi-stream for errors detection and confidence measure calibration [S. Ghannay et al. 2015]
 - Combined word embeddings, syntactic, lexical, prosodic and ASR-based features

Related WORK (2/2) Acoustic embeddings

- * f: speech segments $\rightarrow \mathbb{R}^n$ is a function for mapping speech segments to low-dimensional vectors.
- \rightarrow words that sound similar = neighbors in the continuous space
- Successfully used in:
 - + Query-by-example search system [kamper et al, 2015, levin et al, 2013]
 - + ASR lattice re-scoring system [Bengio and Heiglod et al, 2014]

Contributions

- Building acoustic word embeddings
- Evaluation of their impact on ASR errors detection
- Comparison of their performance to orthographic embeddings
 - Evaluate whether they capture discriminative phonetic information

Architecture Combined Word Embeddings

ASR ERROR DETECTION SYSTEM

Architecture Combined Word Embeddings

Combined word embeddings

Evaluation and combination of word embeddings [S.Ghannay et al. SLSP 2015, LREC 2016]

- ASR error detection
- NLP tasks
- Analogical and similarity tasks
- Combination of word embeddings through auto-encoder yields the best results

Skip-gram [T. Mikolov et al. 2013]

w2vf-deps [O. Levy et al. 2014]

Australian scientist discovers star telescope

GloVe [J. Pennington et al. 2014]

- * building a co-occurrence matrix
- estimating continuous representations of the words

Architecture Evaluation approaches

ACOUSTIC EMBEDDINGS Architecture

Inspired by [Bengio and Heiglod et al, 2014]

1.	Introduction
2.	ASR error detection system
3.	Acoustic embeddings
4.	Experimental results
5.	Conclusion

ACOUSTIC EMBEDDINGS EVALUATION APPROACHES (1/2)

- Measure:
 - + Loss of orthographic information carried by acoustic word embeddings (\mathbf{a})
 - + Gain of acoustic information in comparison to the orthographic embeddings (\mathbf{o})
- Benchmark tasks:
 - Orthographic and phonetic similarity tasks
 - Homophones detection task

Introduction
 ASR error detection system
 Acoustic embeddings
 Experimental results
 Conclusion

Architecture **Evaluation approaches**

ACOUSTIC EMBEDDINGS EVALUATION APPROACHES (2/2)

- Building three evaluation sets:
 - + Lists of n x m word pairs
 - n: number of frequent words
 - m: number of words in the vocabulary
 - Alignment of word pairs
 - Orthographic representation (letters)
 - Phonetic representation (phonemes)
 - + Edition distance and similarity score:

 $SER = rac{\#Ins + \#Sub + \#Del}{\#symbols \ in \ the \ reference \ word} \times 100$

 $Similarity_score = 10 - \min(10, SER/10)$

Example of the three lists content:

List	Examples				
Orthographic	très [t ue] près [pue] 7.5 très [tue] tris [tue] 7.5				
Phonetic	très [t ʁɛ] frais [f ʁɛ] 6.67 très [t ʁɛ] traînent [t ʁɛ n] 6.67				
Homophone	très [t BE] traie [t BE] très [t BE] traient [t BE]				

Experimental Data Evaluation metrics Acoustic word embeddings evaluation results Results on ASR error detection

EXPERIMENTAL DATA

Training data of acoustic word embeddings

- + 488 hours of France Broadcast news (ESTERI, ESTER2 et EPAC)
- Vocabulary : 45k words and classes of homophones
- Occurrences : 5.75 millions
- Training of the ASR error detection systems

Automatic transcriptions of the ETAPE Corpus, generated by:

- ✤ ASR: CMU Sphinx decoder
 - acoustic models: GMM/HMM

Training data of the word embeddings

Corpus composed of 2 billions of words:

- Articles of the French newspaper "Le Monde",
- + French Gigaword corpus,
- Articles provided by Google News,
- Manual transcriptions: 400 hours of French broadcast news

Description of the experimental corpus

Name	#words REF	#words HYP	WER	
Train	349K	316K	25.3	
Dev	54K	50K	24.6	
Test	58K	53K	21.9	

1. Introduction 2. ASR error detection system 3. Acoustic embeddings **4.Experimental results** 5. Conclusion

Experimental Data Evaluation metrics Acoustic word embeddings evaluation results Results on ASR error detection

EVALUATION METRICS

- * Similarity task
 - + Spearman's Rank correlation coefficient $\,
 ho$
- Homophone detection task

+ Precision $P = \frac{\sum_{i=1}^{N} P_{w_i}}{N}$, where Pw is the precision of the word $P_w = \frac{|L_{H_-found}(w)|}{|L_H(w)|}$

- Error detection task
 - Neural architecture vs. CRF [F. Béchet & B. Favre 2013]
 - Error label: Precision (P), Recall (R), and F-measure (F)
 - Overall classification: CER (Classification error rate)

Experimental Data Evaluation metrics Acoustic word embeddings evaluation results Results on ASR error detection

Acoustic word embeddings evaluation

Evaluation sets

- Data:
 - Vocabulary of the audio training corpus 52k
 - + ASR vocabulary 160k
- Language:
 - ✤ French

Evaluation results

Tasks	Motrics	52k V	ocab.	160K Vocab.		
Tasks	WICH ICS	0	a	0	a	
Orthographic	0	54.28	49.97	56.95	51.06	
Phonetic	Ρ	40.40	43.55	41.41	46.88	
Homophone	Р	64.65	72.28	52.87	59.33	

Experimental Data Evaluation metrics Acoustic word embeddings evaluation results **Results on ASR error detection**

ASR ERROR DETECTION TASK

Performance of acoustic word embeddings

	L	Global			
Corpus	Approaches	Р	R	F	CER
Dev	NN (B-Feat.) + s + s + a CRF	70.50 71.98 71.70 68.11	57.56 57.63 58.25 55.37	63.38 64.01 64.28	9.79 9.54 9.53
Test	NN (B-Feat.) + s + s + a	69.66 69.64 70.09	57.89 59.13 58.92	63.23 63.95 64.02	8.07 7.99 7.94
	CRF	67.69	54.74	60.53	8.56

Conclusion

Evaluation of acoustic word embeddings a in comparison to the orthographic ones on:

- Orthographic and phonetic similarity tasks
- Homophones detection task
 - **a** are better than **o**
 - to measure phonetic proximity between words
 - on homophone detection task
 - **a** have captured additional information about word pronunciation
- Evaluation of their impact on ASR error detection task
 - Neural approach using the acoustic word embeddings
 - significant improvement by 7.24% in terms of CER relative to CRF on Test.

Thank you !

