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1. Introduction

Introduction

INTRODUCTION

+ Why error detection is still relevant ?

+ MGB 2015 challenge results for ASR task on BBC data

Best | CRIM/

Sys | LIUM Sysl | Sys2 | Sys3 | LIUM | Sys4 | Sys5 | Sys6 | Sys7 | Sys8 | Sys9
Overall
WER (%) 23.7| 266 | 275|278 |28.8] 304 |30.9] 31.2]35.5]38.0] 38.7 | 40.8

+ The ASR errors may due to the variability:

+ Acoustic condritions, speaker, language style, etc.

+ Impact of ASR errors:

+ Information retrieval,

+ Speech to speech translation,

+ Spoken language understanding,
+ Named entity recognition,

+ Ftc.

[> ASR error detection can help




1. Introduction
Related Work

RELATED WORK ( |/2)
ASR ERROR DETECTION

+ Approaches based on Conditional Random Field (CRF):
+ OQV detection [C. Parada et al. 2010]
+ Contextual information
+ Errors detection [F Béchet & B. Favre 2013]
« ASR based, lexical and syntactic features
+ Errors detection at word/utterance level [Stoyanchev et al. 2012]
* Syntactic and prosodic features

+ Approach based on neural network:

+ MLP for errors detection [T.Yik-Cheung et al. 2014]
« Complementary ASR systems, RNNLM, confusion network

+ MLP furnished by a stacked auto-encoders for errors detection [S. Jalalvand et al. 2015]
+ Confusion network, textual features

+ MLP-Multi-stream for errors detection and confidence measure calibration [S. Ghannay et al. 2015]
- Combined word embeddings, syntactic, lexical, prosodic and ASR-based features
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1. Introduction
Related Work

RELATED WORK (2/2)
ACOUSTIC EMBEDDINGS

*{. speech segments — R"is a function for mapping speech segments to
low-dimensional vectors.

— words that sound similar = neighbors in the continuous space
+ Successtully used In:

+ Query-by-example search system [kamper et al, 2015, levin et al, 2013]
+ ASR lattice re-scoring system [Bengio and Heiglod et al, 2014]



1. Introduction

Contributions

CONTRIBUTIONS

= Building acoustic word embeddings

= BEvaluation of their impact on ASR errors detection

= Comparison of their performance to orthographic embeddings

» Evaluate whether they capture discriminative phonetic information




Architecture
2.ASR error detection system

ASR ERROR DETECTION SYSTEM
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2.ASR error detection system

Combined Word Embeddings

COMBINED WORD EMBE

Evaluation and combination of word embeddings
[S.Ghannay et al. SLSP 2015, LREC 2016]

+ ASR error detection
+ NLP tasks

+ Analogical and similarity tasks

= Combination of word embeddings through auto-encoder

yields the best results

Auto-encoder

Skip-gram |w2vf-deps

GloVe

200-d

Combined
word

embeddings
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Skip-gram [T. Mikolov et al. 2013]
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GloVe [J. Pennington et al. 2014]

+ building a co-occurrence matrix

+ estimating continuous representations
of the words



Architecture

2. ASR error detection system Evaluation approaches
3.Acoustic embeddings
4. Experimental results

5. Conclusion

ACOUSTIC EMBEDDINGS
ARCHITECTURE

Inspired by [Bengio and Heiglod et al, 2014]
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Evaluation approaches
3.Acoustic embeddings

ACOUSTIC EMBEDDINGS
EVALUATION APPROACHES ( 1/2)

+ Measure:
+ Loss of orthographic information carried by acoustic word embeddings (a)
+ Gain of acoustic information in comparison to the orthographic embeddings (o)

+ Benchmark tasks:
+ Orthographic and phonetic similarity tasks
+ Homophones detection task




Evaluation approaches
3.Acoustic embeddings

ACOUSTIC EMBEDDINGS
EVALUATION APPROACHES (2/2)

* Bullding three evaluation sets + Example of the three lists content:

+ Lists of n x m word pairs

* n: number of frequent words List Examples

* m: number of words in the vocabulary tres [tBE] pres [pBE] 7.5

Orthographic| ™" -~ & .
+ Alignment of word pairs tres [tBE] tris [tKi] 7.5

tres [tg] frais [fBE] 6.67

* Orthographic representation (letters Phonetic T R
srap P ( ) tres [tB€] tralnent [tBEn] 6.67

* Phonetic representation (phonemes)

tres [tBE] traie [tBE]

Homophone |~ 7~ ,
tres [tBE] traient [tBE]

+ Edition distance and similarity score:

D
SRR — #Ins.—l— #Sub + #Del < 100
#symbols in the reference word

Similarity_score = 10 — min(10, SER/10)
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Experimental Data

4.Experimental results

—XPERIMENTAL DATA

+ Training data of acoustic word embeddings

+ 488 hours of France Broadcast news (ESTERI, ESTER2 et EPAC)
+ Vocabulary : 45k words and classes of homophones
+ Occurrences : 5.75 millions

+ [raining of the ASR error detection systems Description of the experimental corpus

Automatic transcriptions of the ETAPE Corpus, generated by: ,
| Name words | #words WER
+ ASR: CMU Sphinx decoder REF | HYP
* acoustic models: GMM/HMM

+ [raining data of the word embeddings

Train | 349K 316K | 25.3

Dev 54K 50K | 24.6

Corpus composed of 2 billions of words:
+ Articles of the French newspaper "Le Monde’,
+ French Gigaword corpus,
+ Articles provided by Google News,
+ Manual transcriptions: 400 hours of French broadcast news

Test 58K 53K | 21.9
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4.Experimental results

Evaluation metrics

+ Similarity task

* Homophone detection task

+ Spearman’s Rank correlation coefficient P

Wy

ZN
+ Precision p — &i=1
N

+ Error detection task

-

Neural architecture vs. CRF

—VALUATION METRICS

~where Pw is the precision of the word Py, =

[F. Béchet & B. Favre 201 3]

+ Error label: Precision (P), Recall (R), and F-measure (F)

+ Overall classification: CER (Classification error rate)
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Acoustic word embeddings evaluation results
4.Experimental results

ACOUSTIC WORD EMBEDDINGS EVALUATION

Evaluation sets
+ Data:

+ Vocabulary of the audio training corpus 52k
+ ASR vocabulary |60k

+ |anguage:
+ French

Evaluation results

52k Vocab. 160K Vocab.
Tasks Metrics
) a 0 a
Orthographic 54.28 (4997 |56.95 |51.06
P
Phonetic 4040 [43.55 (4141 [46.88
Homophone P 64.65 |72.28 |52.87 [59.33
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4.Experimental results

Results on ASR error detection

ASR ERROR D

-TECTION TASK

Performance of acoustic word embeddings

Label error Global

Corpus Approaches P R F CER
NN (B-Feat) 70.50 5756 63.38 9.79

+s 71.98 57.63 640 9.54

Dev ts+a 71.70 58.25 64.28 9.53
CRF 68.1 | 5537 61.08 10.38

NN (B-Feat) 69.66 57.89 63.23 8.07

+s 69.64 59.13 63.95 7.99

Test ts+a 70.09 58.92 64.02 7.94
CRF 67.69 5474 60.53 8.56
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5.Conclusion

CONCLUSION

+ Evaluation of acoustic word embeddings a in comparison to the orthographic o
ones on:

+ Orthographic and phonetic similarity tasks
+ Homophones detection task
= a are better than o
» to measure phonetic proximity between words
» on homophone detection task

= a have captured additional information about word pronunciation

+ Evaluation of their impact on ASR error detection task

+ Neural approach using the acoustic word embeddings

= significant improvement by 7.24% in terms of CER relative to CRF on Test.







