

Word Embeddings combination and neural network for robustness in ASR error detection

Sahar Ghannay, Yannick Estève, Nathalie Camelin

LIUM, University of Le Mans, France

EUSIPCO 2015 Nice, The 2015 European Signal Processing Conference

03/09/2015

MGB 2015 challenge results for ASR task on BBC data

	Best Sys	CRIM/ LIUM	Sys1	Sys2	Sys3	LIUM	Sys4	Sys5	Sys6	Sys7	Sys8	Sys9
Overall WER(%)	23.7	26.6	27.5	27.8	28.8	30.4	30.9	31.2	35.5	38.0	38.7	40.8

Introduction

MGB 2015 challenge result Detailed performance of the best system

Show	CU
Daily Politics	10.4
Magnetic North	11.6
Dragons'Den	11.5
Eggheads	14.1
Athletics London	14.7
Point of View	13.5
Syd Barrett	21.3
Top Gear	21.8
Blue Peter	24.6
Legend of the Dragon	21.7
The North West 200	27.7
Holby City	32.1
The Wall	33.7
One Life Special Mum	35.3
Goodness Gracious ME	37.2
Oliver Twist	41.4
Overall WER(%)	23.7

ASR errors have impact on applications:

- Information retrieval
- Speech to speech translation
- Spoken language understanding
- * etc.

ASR errors have impact on applications:

- Information retrieval
- Speech to speech translation
- Spoken language understanding
- * etc.

✓ Related work

- Approaches based on Conditional Random Field (CRF)
 - OOV detection [C. Parada *et al.* 2010]
 - contextual informations
 - Errors detection [F. Béchet & B. Favre 2013]
 - ASR based, lexical and syntactic informations
- Approach based on neural network
 - Errors detection [T. Yik-Cheung et al. 2014]
 - complementary ASR systems

- ✓ Related work
- Approaches based on Conditional Random Field (CRF)
 - OOV detection [C. Parada *et al.* 2010]
 - contextual informations
 - + Errors detection [F. Béchet & B. Favre 2013]
 - ASR based, lexical and syntactic informations
- Approach based on neural network
 - Errors detection [T. Yik-Cheung et al. 2014]
 - complementary ASR systems

✓ Contributions

- Neural approach
 - Effective word embeddings combination
 - New neural architectures

Set of features

The features are inspired by [F. Béchet and B. Favre 2013]

- Posterior probabilities
- Lexical features
 - word length
 - existence 3-gram
- Syntactic features
 - POS tag
 - dependency labels
 - word governors

✤ Word

Figure 1: ASR error detection system

Set of features

The features are inspired by [F. Béchet and B. Favre 2013]

- Posterior probabilities
- Lexical features
 - word length
 - existence 3-gram
- Syntactic features
 - POS tag

✤ Word

- dependency labels
- word governors

Figure 1: ASR error detection system

Word embeddings

Mapping words to high-dimensional vectors (e.g. 200 dimensions)

$$R: Words = \{W_1, ..., W_n\} \rightarrow Vectors = \{R(W_1), ..., R(W_n)\} \subset R^d$$

Distance between vectors indicates the relation between words

 $R(W_1) \approx R(W_n) \to W_1 \approx W_n$

Word embeddings

Mapping words to high-dimensional vectors (e.g. 200 dimensions)

$$R: Words = \{W_1, ..., W_n\} \to Vectors = \{R(W_1), ..., R(W_n)\} \subset R^d$$

Distance between vectors indicates the relation between words

Figure 2: 2D t-SNE visualizations of word embeddings. Left: Number Region; Right: Jobs Region [J.Turian *et al*. 2010]

Word embeddings

Mapping words to high-dimensional vectors (e.g. 200 dimensions)

$$R: Words = \{W_1, ..., W_n\} \to Vectors = \{R(W_1), ..., R(W_n)\} \subset R^d$$

Distance between vectors indicates the relation between words

					× ,						
			00	0	1				FRANCE	JESUS	XBOX
				20 15					AUSTRIA	GOD	AMIGA
	f	few	fivo	10	30		n leade	ninister er	BELGIUM	SATI	PLAYSTATION
		two	nve	six		head	president		GERMANY	CHRIST	MSX
		t several	hree ^{four}	-		chief	chairı director	nan spokesman	ITALY	SATAN	IPOD
some	many		other				director		GREECE	KALI	SEGA
41-			liei			execut	^{ive} trader	analyst	SWEDEN	INDRA	psNUMBER
those th	all								NORWAY	VISHNU	HD
		both							EUROPE	ANANDA	DREAMCAST
									HUNGARY	PARVATI	GEFORCE
									SWITZERLAND	GRACE	CAPCOM

 $R(W_1) \approx R(W_n) \to W_1 \approx W_n$

Figure 2: 2D t-SNE visualizations of word embeddings. Left: Number Region; Right: Jobs Region [J.Turian *et al*. 2010]

Figure 3: What words have embeddings closest to a given word? [R.Collobert *et al*. 2011]

Word embeddings approaches(1/3)

- Tur: Collobert and Weston embeddings revised by Joseph Turian [J.Turian *et al.* 2010]
 - Existence n-gram
 - Training criterion: score (n-gram) > score (corrupted n-gram) + some margin
 - Morpho-syntactic similarities

Figure 4: Neural architecture to compute 50 dimensional word embeddings

Word embeddings approaches(2/3)

- 2. Word2vec [T.Micolov et al. 2013]
 - Continuous bag of words (CBOW)
 - predicting the current word based on its context
 - Syntactic modeling

Figure 5: CBOW architecture

Word embeddings approaches(3/3)

- GloVe: global vector for word representation [J.Pennington *et al.* 2014]
 - Analysis of co-occurrences of words in a window
 - building a co-occurrence matrix
 - estimating continuous representations of the words
 - Semantic similarities

Word embeddings combination

Combine word embeddings using denoising auto-encoder

Figure 6: Using denoising auto-encoder to combine word embeddings

Neural architecture 1: Classical MLP

Figure 7: MLP architecture for ASR error detection task

Neural architecture 2: MLP-Multi-Stream

Figure 8: MLP-MS architecture for ASR error detection task

Neural architecture 3: MLP-Multi-Stream-i

Figure 9: MLP-MS-i architecture for ASR error detection task

ASR error detection process

Figure 10: ASR error detection process

Experimental data

Training of the neural systems:

Automatic transcriptions of the ETAPE Corpus, generated by:

- ✤ ASR 1: CMU Sphinx decoder
 - acoustic models: GMM/HMM
- ✤ ASR 2: Kaldi decoder
 - acoustic models: DNN/HMM

ASR	Name	Name #words REF		WER
0.1.	Train	349K	316K	25.9
Sphinx GMM	Dev Sphinx	54K	50K	25.2
CIVIIVI	Test Sphinx	58K	53K	22.5
Kaldi	Dev Kaldi	54K	50K	23.1
DININ	Test Kaldi	58K	53K	20.4

Table 1: Composition of the experimental corpus

Experimental data

Training data of the word embeddings:

Corpus composed of 2 billions of words:

- Articles of the French newspaper "Le Monde",
- French Gigaword corpus,
- Articles provided by Google News,
- Manual transcriptions: 400 hours of French broadcast news.

Evaluation results

- Neural architectures vs. CRF
- Evaluation metrics:
 - Error label: F-measure
 - Overall classification: CER

Comparison of different word embeddings

		Label error	Global
Neural architecture	Embeddings	F-measure	CER
	GloVe	59.9	10.56
	w2v	61.1	10.36
MLP	tur	60.4	10.32
	Auto-encoder-100	61.8	10.18
	Auto-encoder-200	62.5	10.07

Table 2: Comparison on Dev-sphinx of different types of word embeddings used as additionalfeatures in MLP error detection system.

			Label error	Global
Train	Test	Approaches	F-measure	CER
		CRF(baseline)	57.6	8.78
Train	Test Sphinx	MLP	61.5	8.52
Sphinx		MLP-MS	61.4	8.43
		YestApproachesF-measureYestCRF(baseline)57.6TestMLP61.5MLP-MS61.4MLP-MS-i62.1CRF(baseline)51.3TestMLP50.4MLP-MS49.4MLP-MS-i52.7	8.49	
		CRF(baseline)	51.3	8.59
Train	Test	MLP	50.4	8.34
Sphinx	kaldi	MLP-MS	49.4	8.29
		MLP-MS-i	52.7	8.15

Table 3: Error detection results on Test Sphinx and Test kaldi transcriptions.

			Label error	Global
Train	Test	Approaches	F-measure	CER
		CRF(baseline)	57.6	8.78
Train	Test Sphinx	MLP	61.5	8.52
Sphinx		MLP-MS	61.4	8.43
		MLP-MS 61. MLP-MS-i 62.	62.1	8.49
		CRF(baseline)	51.3	8.59
Train	Test	MLP	50.4	8.34
Sphinx	kaldi	MLP-MS	49.4	8.29
		MLP-MS-i	52.7	8.15

Table 3: Error detection results on Test Sphinx and Test kaldi transcriptions.

			Label error	Global
Train	Test	Approaches	F-measure	CER
		CRF(baseline)	57.6	8.78
Train	Test Sphinx	MLP	61.5	8.52
Sphinx		MLP-MS	61.4	8.43
		Label error Calify Label error Calify Label error Calify Label error Calify CRF(baseline) 57.6 MLP 61.5 MLP-MS 61.4 MLP-MS-i 62.1 CRF(baseline) 51.3 MLP-MS 50.4 MLP-MS 49.4 MLP-MS-i 52.7	8.49	
		CRF(baseline)	51.3	8.59
Train	Test	MLP	50.4	8.34
Sphinx	kaldi	MLP-MS	49.4	8.29
		MLP-MS-i	52.7	8.15

Table 3: Error detection results on Test Sphinx and Test kaldi transcriptions.

Conclusions

Perspectives:

- ◆ Analysis of ASR error detection system outputs → Which ASR error are hard to detect, [S.Ghannay et al. ERRARE 2015]
- Exploiting new features:
 - Prosodic features → Combining continuous word representation and prosodic features for ASR error prediction [S.Ghannay *et al.* SLSP 2015]
 - Global semantic information
- ✤ Recurrent neural network → sequence prediction

Chank you

			Label error	Global
Train	Test	Approaches	F-measure	CER
		CRF(baseline)	57.6	8.78
Tusta	T 4	MLP	61.5	8.52
Irain Sphiny	Test Sphinx CRF(baseline) MLP-i MLP-MS MLP-MS-i CRF(baseline) MLP MLP-i MLP-i MLP-i	MLP-i	59.77	8.56
Spiinix		MLP-MS	61.4	8.43
		MLP-MS-i	62.1	8.49
		CRF(baseline)	51.3	8.59
T	Τ	MLP	50.4	8.34
Irain Sphiny	Test	MLP-i	48.80	8.30
Spiinix	Kalul	MLP-MS	49.4	8.29
		MLP-MS-i	52.7	8.15

Table 3: Error detection results on Test Sphinx and Test kaldi transcriptions.

Neural network input feature vector format

Example: 25 POS tags, 3rd POS tag

Figure 2 : Neural network input feature vector format

Ι			Label error			
corpus	approach	P	R	F	CER	
	Naive	66.9	48.8	56.4	11.21	
	CRF	70.8	50.6	59.0	10.44	
Day onliny	MLP-1	71.0	53.3	60.9	10.17	
	MLP-2	70.0	56.4	62.5	10.07	
	MLP-MS	70.7	55.9	62.5	9.99	
	MLP-MS-i	68.8	58.0	63.0	10.15	
	Naive	65.3	47.1	54.7	9.42	
	CRF	69.2	49.3	57.6	8.78	
Tost sphiny	MLP-1	69.3	53.3	60.3	8.50	
rest-spinnx	MLP-2	67.8	56.3	61.5	8.52	
	MLP-MS	68.8	55.5	61.4	8.43	
	MLP-MS-i	67.5	57.4	62.1	8.49	

Table 3 : Error detection results on ASR Sphinx transcriptions.

		Label	Global		
corpus	approach	Р	R	F	CER
	Naive	68.6	31.0	42.7	10.95
	CRF	63.6	40.5	49.5	10.88
Day kaldi	MLP-1	70.3	35.9	47.6	10.43
Dev-kalul	MLP-2	68.0	38.4	49.1	10.49
	MLP-MS	69.8	36.5	47.9	10.44
	MLP-MS-i	68.3	41.3	51.5	10.25
	Naive	69.3	32.2	43.9	8.70
	CRF	64.3	42.6	51.3	8.59
Toot Iroldi	MLP-1	69.4	37.0	48.3	8.41
Test-kalul	MLP-2	68.2	40.0	50.4	8.34
	MLP-MS	70.0	38.2	49.4	8.29
	MLP-MS-i	68.5	42.9	52.7	8.15

 Table 3 : Error detection results on ASR kaldi transcriptions