

Continuous word representation and prosodic features for ASR error detection

Sahar Ghannay, Yannick Estève, Nathalie Camelin, Camille Dutrey, Fabián Santiago, and Martine Adda-Decker

> LIUM, IICC, University of Le Mans France LPP - Université Sorbonne Nouvelle, Paris, France

SLSP 2015, Statistical Language and Speech Processing, Budapest, Hungary

MGB 2015 challenge results for ASR task on BBC data

	Best Sys	CRIM/ LIUM	Sys1	Sys2	Sys3	LIUM	Sys4	Sys5	Sys6	Sys7	Sys8	Sys9
Overall WER(%)	23.7	26.6	27.5	27.8	28.8	30.4	30.9	31.2	35.5	38.0	38.7	40.8

MGB 2015 challenge result
Detailed performance of the best system

Show	CU
Daily Politics	10.4
Magnetic North	11.6
Dragons'Den	11.5
Eggheads	14.1
Athletics London	14.7
Point of View	13.5
Syd Barrett	21.3
Top Gear	21.8
Blue Peter	24.6
Legend of the Dragon	21.7
The North West 200	27.7
Holby City	32.1
The Wall	33.7
One Life Special Mum	35.3
Goodness Gracious ME	37.2
Oliver Twist	41.4
Overall WER(%)	23.7

ASR errors have impact on downstream applications:

- Information retrieval
- Speech to speech translation
- Spoken language understanding
- etc.

ASR error detection can help

- ✓ Related work
- Approaches based on Conditional Random Field (CRF)
 - OOV detection [C. Parada et al. 2010]
 - Contextual informations
 - Errors detection [F. Béchet & B. Favre 2013]
 - ASR based, lexical and syntactic informations
 - + Errors detection at word/utterance level [Stoyanchev et al. 2012]
 - Syntactic and prosodic features
- Approach based on neural network
 - * Errors detection [T. Yik-Cheung et al. 2014]
 - Complementary ASR systems

- ✓ Contributions
- Neural approach
 - Word embeddings combination
 - Prosodic features
 - Confidence measures produced by the neural system

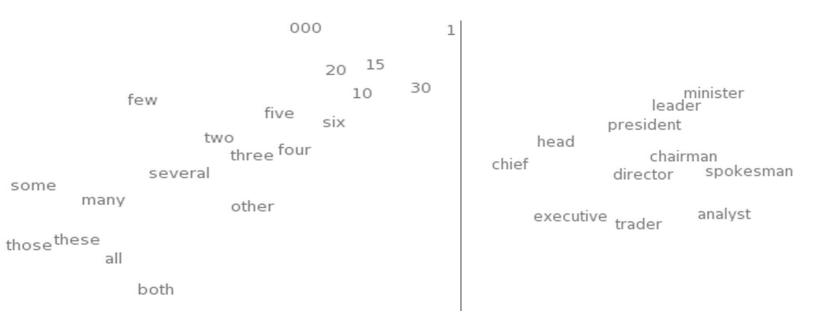
Word embeddings

Mapping words to high-dimensional vectors (e.g. 200 dimensions)

$$R: Words = \{W_1, ..., W_n\} \rightarrow Vectors = \{R(W_1), ..., R(W_n)\} \subset R^d$$

Distance between vectors indicates the relation between words

$$R(W_1) \approx R(W_n) \to W_1 \approx W_n$$



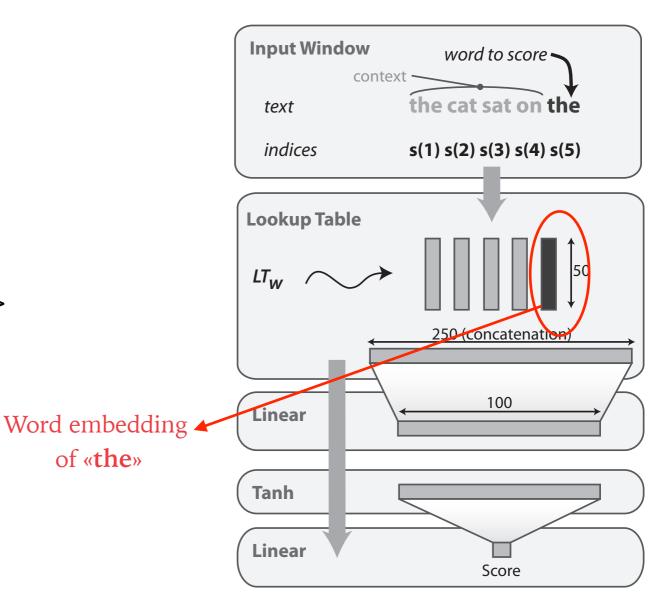
JESUS	XBOX
GOD	AMIGA
SATI	PLAYSTATION
CHRIST	MSX
SATAN	IPOD
KALI	SEGA
INDRA	PSNUMBER
VISHNU	$^{ m HD}$
ANANDA	DREAMCAST
PARVATI	GEFORCE
GRACE	CAPCOM
	GOD SATI CHRIST SATAN KALI INDRA VISHNU ANANDA PARVATI

2D t-SNE visualizations of word embeddings. Left: Number Region; Right: Jobs Region [J.Turian et al . 2010]

What words have embeddings closest to a given word? [R.Collobert *et al* . 2011]

Word embeddings approaches (1/3)

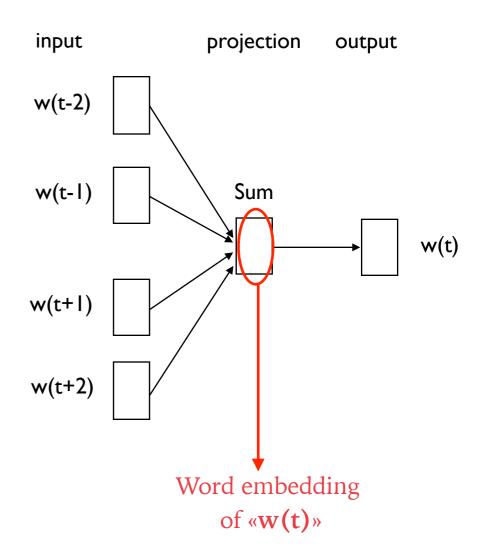
- 1. Tur: Collobert and Weston embeddings revised by Joseph Turian [J.Turian et al. 2010]
 - Existence n-gram
 - Training criterion: score (n-gram) > score (corrupted n-gram) + some margin
 - Morpho-syntactic similarities



Neural architecture to compute 50 dimensional word embeddings

Word embeddings approaches (2/3)

- 2. Word2vec [T.Micolov et al. 2013]
 - Continuous bag of words (CBOW)
 - predicting the current word based on its context
 - Syntactic modeling



CBOW architecture

Word embeddings approaches (3/3)

- 3. Glove: global vector for word representation [J.Pennington *et al.* 2014]
 - Analysis of co-occurrences of words in a window
 - building a co-occurrence matrix
 - estimating continuous representations of the words
 - Semantic similarities

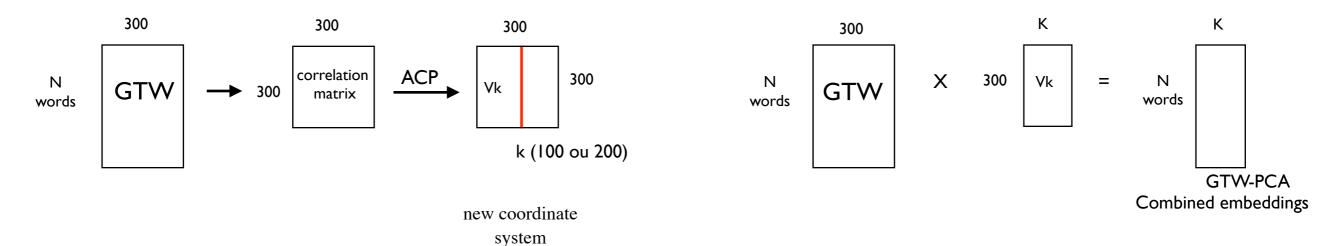
Word embeddings combination (1/3)

- 1. Simple concatenation (GTW)
 - concatenation of 100 dimensional word embeddings: glove, tur et w2v
 - word = vector of 300 dimensions

glove	tur	w2v	300 D

Word embeddings combination (2/3)

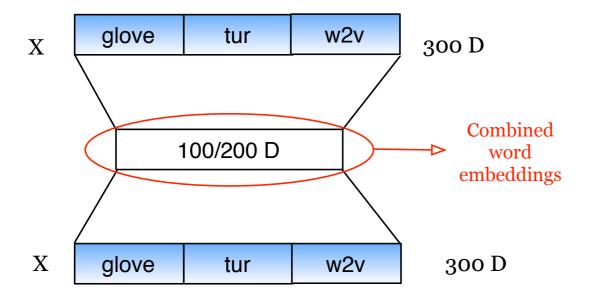
- 2. Principal Component Analysis (PCA)
 - Convert correlated variables into uncorrelated variables called principal components.



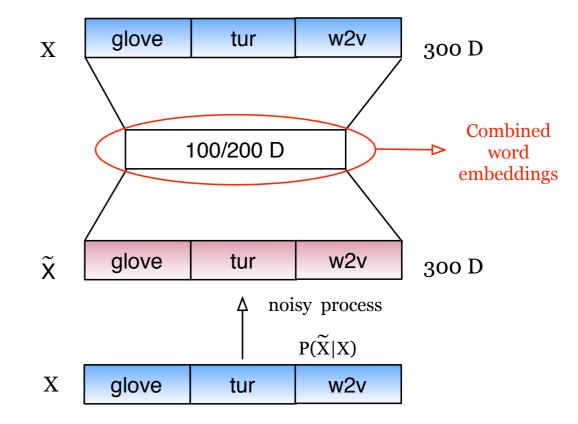
Word embeddings combination (3/3)

3. Auto-encoders

Ordinary auto-encoder (GTW-O)



Denoising auto-encoder (GTW-D)



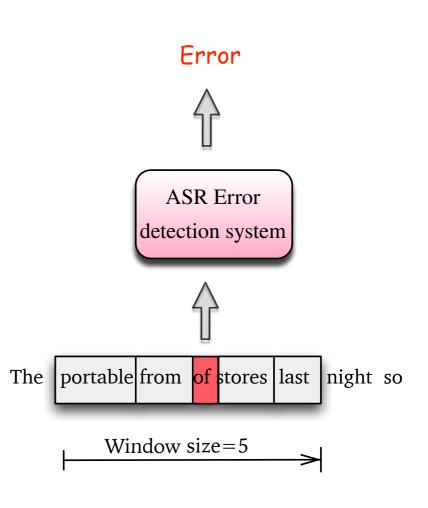
Set of features

Features used in [S.Ghannay et al. 2015]

- Posterior probabilities
- Lexical features
 - word length
 - existence 3-gram
- Syntactic features
 - POS tag
 - dependency labels
 - word governors
- Word

Word embeddings

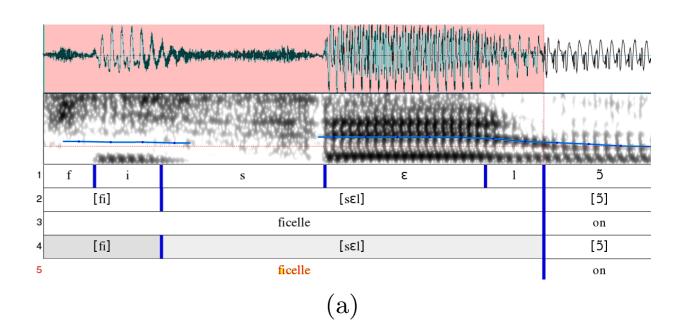
ASR

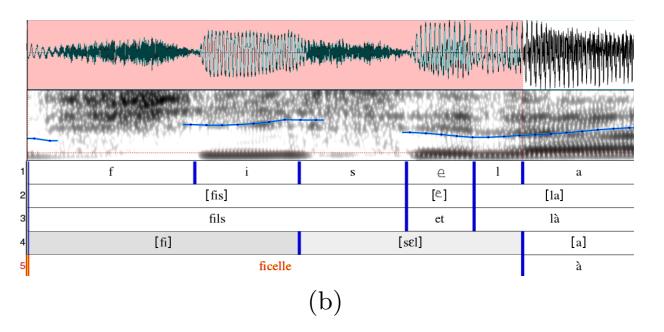


Set of features

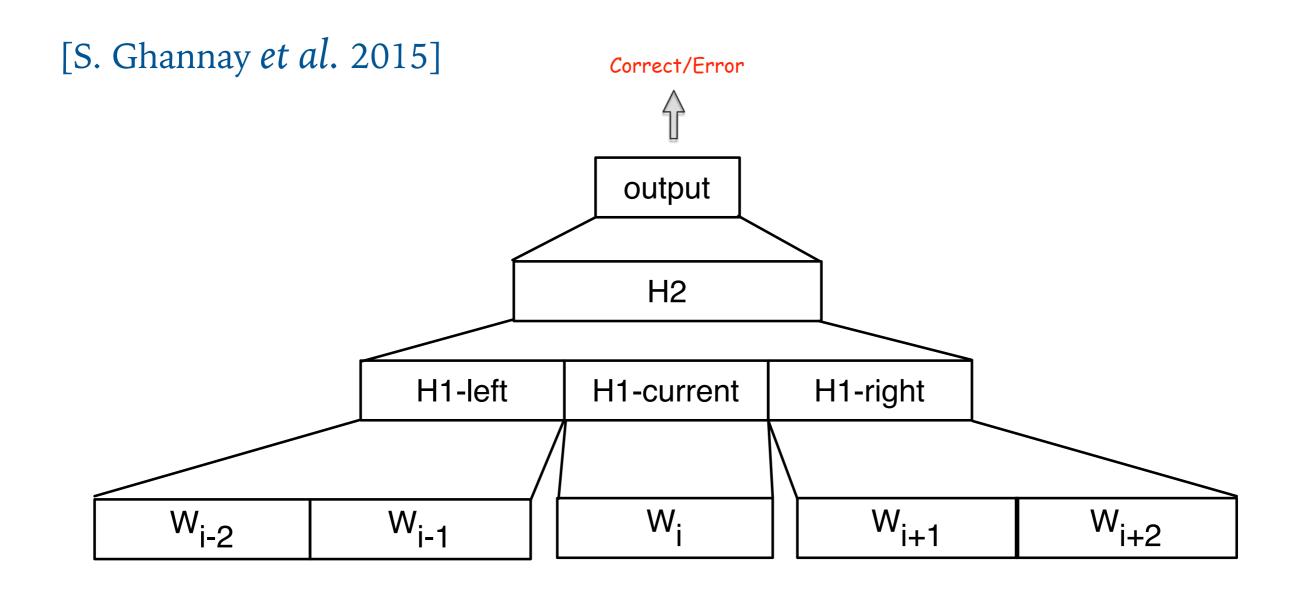
Prosodic features

- number of phonemes
- average duration of phonemes
- average f0 of the word
- f0 delta of the last word
- f0 semitone delta last word
- duration of the previous pause





Neural architecture: MLP-Multi-Stream



Experimental data

Training of the neural system:

Automatic transcriptions of the ETAPE Corpus [G.Gravier et al. 2012], generated by:

ASR: CMU Sphinx decoder

acoustic models: GMM/HMM

ASR	Name	#words REF	#words HYP	WER
Calainas	Train	349K	316K	25.3
Sphinx GMM	Dev	54K	50K	24.6
GIVIIVI	Test	58K	53K	21.9

Training data of the word embeddings:

Corpus composed of 2 billions of words:

- Articles of the French newspaper "Le Monde",
- + French Gigaword corpus,
- Articles provided by Google News,
- * Manual transcriptions: 400 hours of French broadcast news.

Evaluation results

- Neural architecture vs. CRF
- Evaluation metrics:
 - Error label: F-measure
 - Overall classification: CER
 - NCE: confidence measures

Comparison of different word embeddings (Dev corpus)
Without prosodic features

		Label error	Global
Neural architecture	Embeddings	F-measure	CER
	Glove	59.64	10.60
	tur	57.58	10.54
	w2v	56.69	10.49
	GTW 300	59.71	10.38
MLP-MS	GTW-PCA100	59.04	10.39
	GTW-PCA200	57.09	10.48
	GTW-O100	56.43	10.28
	GTW-O200	61.86	9.86
	GTW-D100	61.63	10.12
	GTW-D200	63.42	9.89

Performance of MLP-MS on Test corpus Without prosodic features

	Label error	Global
Approach	F-measure	CER
CRF(baseline)	57.52	8.79
GTW-O200 GTW-D200	61.83 62.25	8.10 8.25

Performance of MLP-MS (Dev+Test corpus)
With prosodic features

	A	Label error	Global
Corpus	Approach	F-measure	CER
	CRF(baseline)	59.48	10.41
Dev	GTW-O200 GTW-D200	61.86 63.42	9.86 9.89
	CRF(baseline)	57.52	57.52
Test	GTW-O200 GTW-D200	61.83 62.25	8.10 8.25

- prosodic features

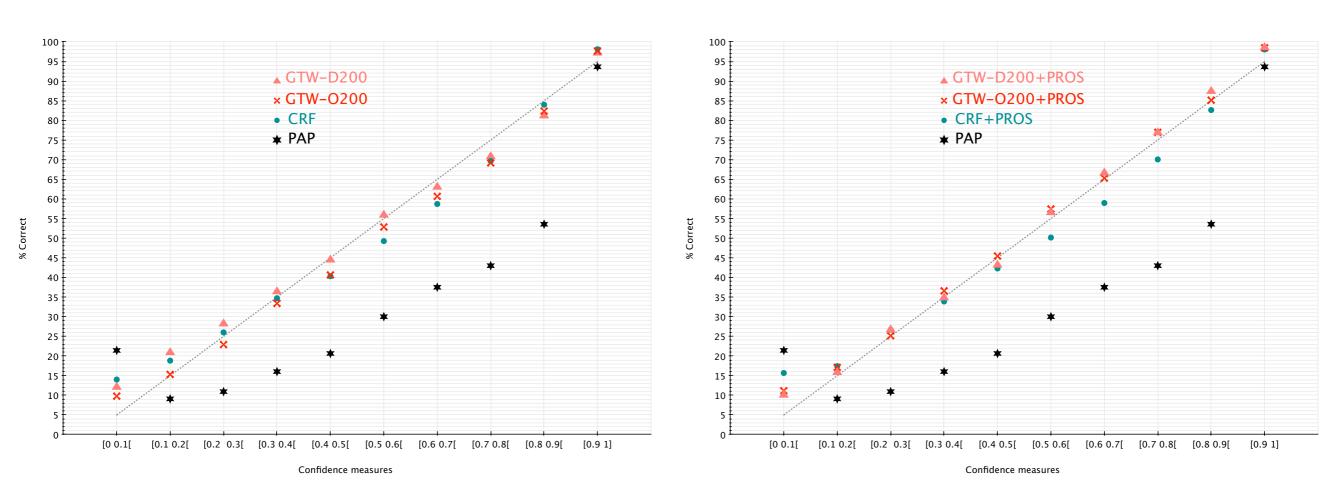
	Δ	Label error	Global	
Corpus	Approach	F-measure	CER	
	CRF(baseline) + pros	60.20	10.29	
Dev	GTW-O200+pros GTW-D200+pros	64.80 64.11	9.67 9.55	
	CRF(baseline) + pros	59.17	8.57	
Test	GTW-O200+pros GTW-D200+pros	64.73 64.42	7.96 8.03	

Calibrated confidence measure

Name	PAP	Softmax proba GTW-D200	Softmax proba GTW-O200	CRF		
	Without prosodic features					
Dev	-0.064	0.0425	0.443	0.445		
Test	-0.044	0.448	0.461	0.457		
	With prosodic features					
Dev	-0.064	0.461	0.463	0.449		
Test	-0.044	0.471	0.477	0.463		

NCE for PAP and the probabilities resulting from MLP-MS and CRF

Calibrated confidence measure



- prosodic features

+prosodic features

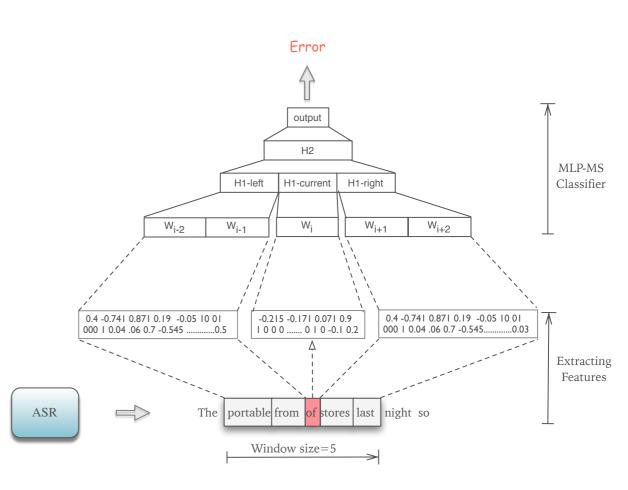
Pourcentage of correct words based on PAP and confidence measures derived from MLP-MS and CRF

Conclusions

ASR error detection system

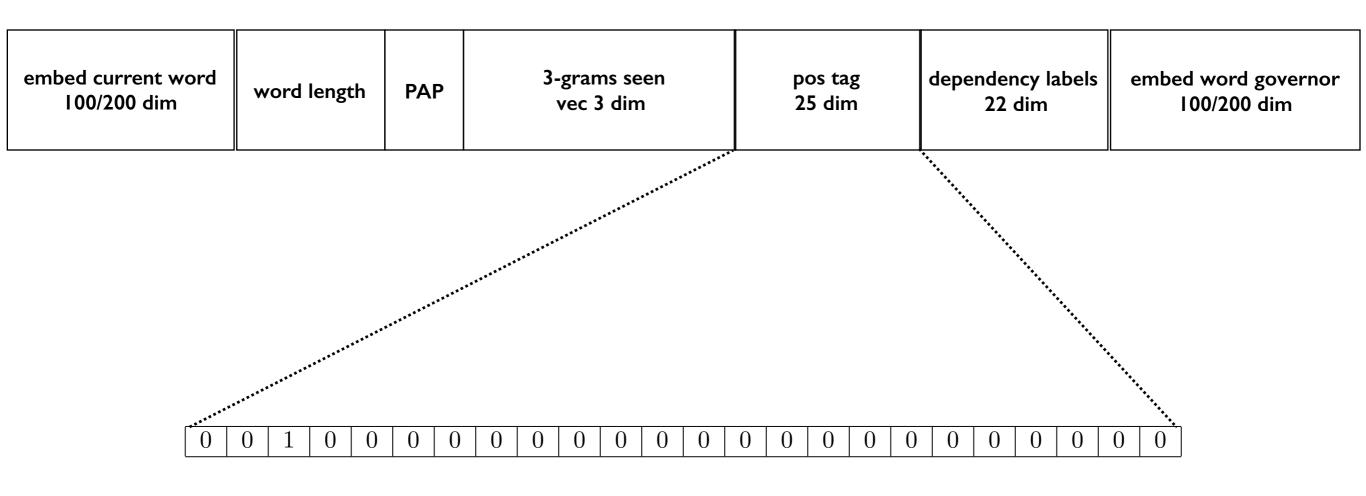
- Word embeddings combination
- Prosodic features
- MLP-MS architecture

- Outperforms CRF approach
- → Produces calibrated confidence measures



Thank you

Neural network input feature vector format



Example: 25 POS tags, 3rd POS tag

Figure 11: Neural network input feature vector format (252/452 D)