

Which ASR errors are hard to detect?

Sahar Ghannay, Nathalie Camelin, Yannick Estève

LIUM, University of Le Mans France

ERRARE 2015, Errors produced and processed by humans and machines in multimedia, multimodal and multilingual data, Workshop

MGB 2015 challenge results for ASR task on BBC data

	Best Sys	CRIM/ LIUM	Sys1	Sys2	Sys3	LIUM	Sys4	Sys5	Sys6	Sys7	Sys8	Sys9
Overall WER(%)	23.7	26.6	27.5	27.8	28.8	30.4	30.9	31.2	35.5	38.0	38.7	40.8

Introduction

MGB 2015 challenge result

Detailed performance of the best system

Show	CU
Daily Politics	10.4
Magnetic North	11.6
Dragons'Den	11.5
Eggheads	14.1
Athletics London	14.7
Point of View	13.5
Syd Barrett	21.3
Top Gear	21.8
Blue Peter	24.6
Legend of the Dragon	21.7
The North West 200	27.7
Holby City	32.1
The Wall	33.7
One Life Special Mum	35.3
Goodness Gracious ME	37.2
Oliver Twist	41.4
Overall WER(%)	23.7

Introduction ASR error detection system Experiments and results Conclusions Introduction

ASR errors have impact on applications:

- Information retrieval
- Speech to speech translation
- Spoken language understanding
- * etc.

Introduction ASR error detection system Experiments and results Conclusions Introduction

ASR errors have impact on applications:

- Information retrieval
- Speech to speech translation
- Spoken language understanding
- * etc.

✓ Related work

- Approaches based on Conditional Random Field (CRF)
 - OOV detection [C. Parada *et al.* 2010]
 - contextual informations
 - Errors detection [F. Béchet & B. Favre 2013]
 - ASR based, lexical and syntactic informations
- Approach based on neural network
 - Errors detection [T. Yik-Cheung *et al.* 2014]
 - complementary ASR systems

- ✓ Related work
- Approaches based on Conditional Random Field (CRF)
 - OOV detection [C. Parada *et al.* 2010]
 - contextual informations
 - Errors detection [F. Béchet & B. Favre 2013]
 - ASR based, lexical and syntactic informations
- Approach based on neural network
 - Errors detection [T. Yik-Cheung et al. 2014]
 - complementary ASR systems

✓ Contributions

- Neural approach
 - Effective word embeddings combination
 - New neural architecture
- Analysis of ASR error detection system outputs

Set of features

The features are inspired by [F. Béchet and B. Favre 2013]

- Posterior probabilities
- Lexical features
 - word length
 - existence 3-gram
- Syntactic features
 - POS tag
 - dependency labels
 - word governors

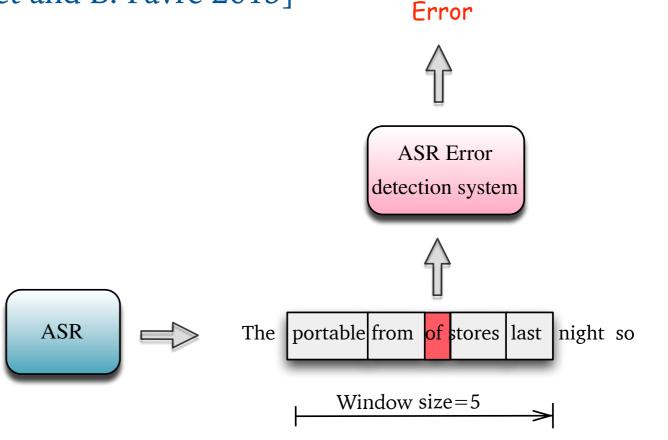


Figure 1: ASR error detection system

Set of features

The features are inspired by [F. Béchet and B. Favre 2013]

- Posterior probabilities
- Lexical features
 - word length
 - existence 3-gram
- Syntactic features
 - POS tag
 - dependency labels
 - word governors

Word embeddings

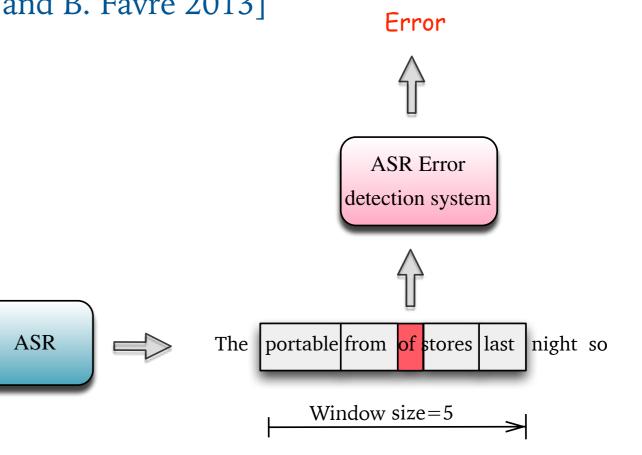


Figure 1: ASR error detection system

Word embeddings

Mapping words to high-dimensional vectors (e.g. 200 dimensions)

$$R: Words = \{W_1, ..., W_n\} \to Vectors = \{R(W_1), ..., R(W_n)\} \subset R^d$$

Distance between vectors indicates the relation between words

 $R(W_1) \approx R(W_n) \to W_1 \approx W_n$

Word embeddings

Mapping words to high-dimensional vectors (e.g. 200 dimensions)

$$R: Words = \{W_1, ..., W_n\} \to Vectors = \{R(W_1), ..., R(W_n)\} \subset R^d$$

Distance between vectors indicates the relation between words

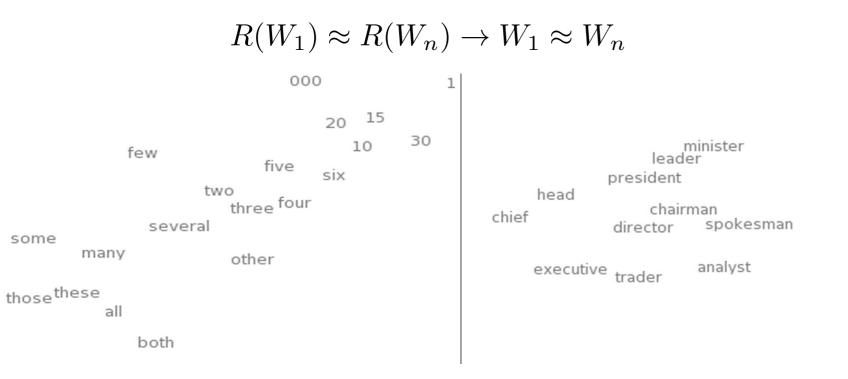


Figure 2: 2D t-SNE visualizations of word embeddings. Left: Number Region; Right: Jobs Region [J.Turian *et al*. 2010]

Word embeddings

Mapping words to high-dimensional vectors (e.g. 200 dimensions)

$$R: Words = \{W_1, ..., W_n\} \to Vectors = \{R(W_1), ..., R(W_n)\} \subset R^d$$

Distance between vectors indicates the relation between words

) • • • • • •	$\langle \cdot \cdot n \rangle$		ļ			
		00	00	1			FRANCE	JESUS	XBOX
			20 15				AUSTRIA	GOD	AMIGA
	fe	w five	10	30		minister leader	BELGIUM	SATI	PLAYSTATION
		two	six		pi head	resident	GERMANY	CHRIST	MSX
		three fou several	r		chief	chairman director spokesman	ITALY	SATAN	IPOD
some	many	other					GREECE	KALI	SEGA
th		other			executive t	rader analyst	SWEDEN	INDRA	psNUMBER
those th	all						NORWAY	VISHNU	HD
	b	oth					EUROPE	ANANDA	DREAMCAST
							HUNGARY	PARVATI	GEFORCE
							SWITZERLAND	GRACE	CAPCOM

 $R(W_1) \approx R(W_n) \to W_1 \approx W_n$

Figure 2: 2D t-SNE visualizations of word embeddings. Left: Number Region; Right: Jobs Region [J.Turian *et al*. 2010]

Figure 3: What words have embeddings closest to a given word? [R.Collobert *et al*. 2011]

Word embeddings approaches(1/3)

- Tur: Collobert and Weston embeddings revised by Joseph Turian [J.Turian *et al.* 2010]
 - Existence n-gram
 - Training criterion: score (n-gram) > score (corrupted n-gram) + some margin
 - Morpho-syntactic similarities

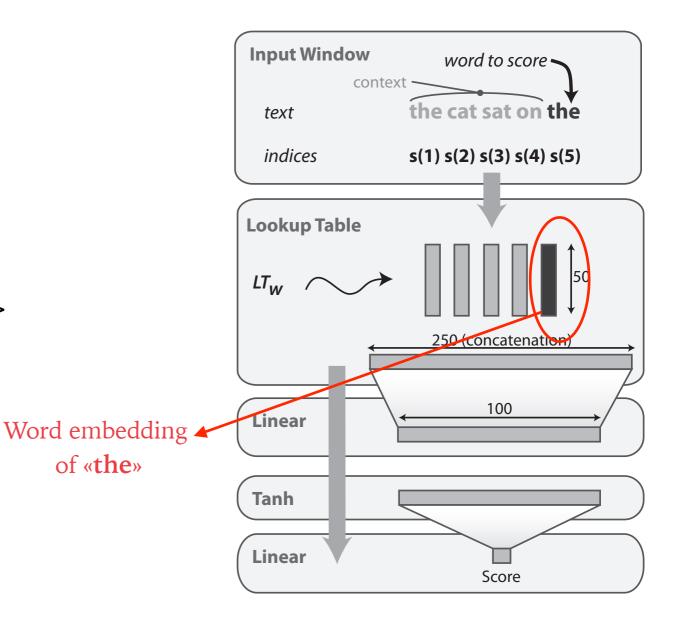


Figure 4: Neural architecture to compute 50 dimensional word embeddings

Word embeddings approaches(2/3)

- 2. Word2vec [T.Micolov et al. 2013]
 - Continuous bag of words (CBOW)
 - predicting the current word based on its context
 - Syntactic modeling

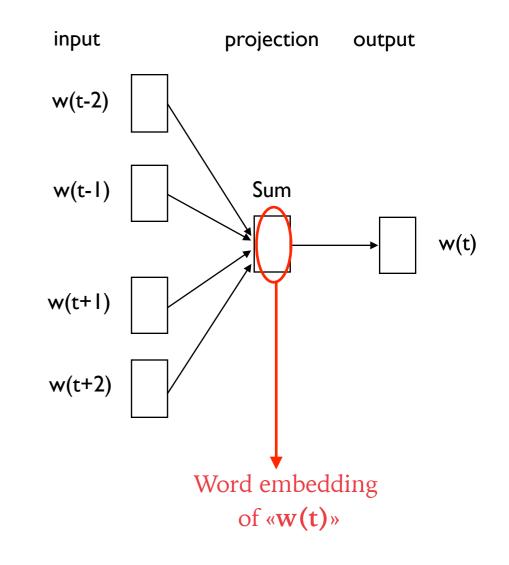


Figure 5: CBOW architecture

Word embeddings approaches(3/3)

- Glove: global vector for word representation [J.Pennington *et al.* 2014]
 - Analysis of co-occurrences of words in a window
 - building a co-occurrence matrix
 - estimating continuous representations of the words
 - Semantic similarities

Word embeddings combination

Combine word embeddings using denoising auto-encoder

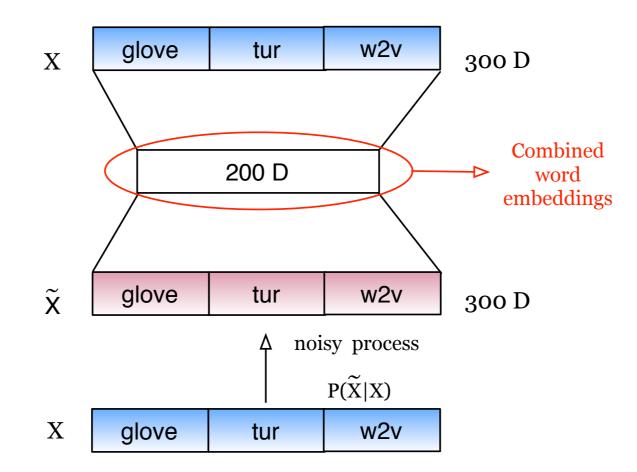


Figure 6: Using denoising auto-encoder to combine word embeddings

Neural architecture: MLP-Multi-Stream

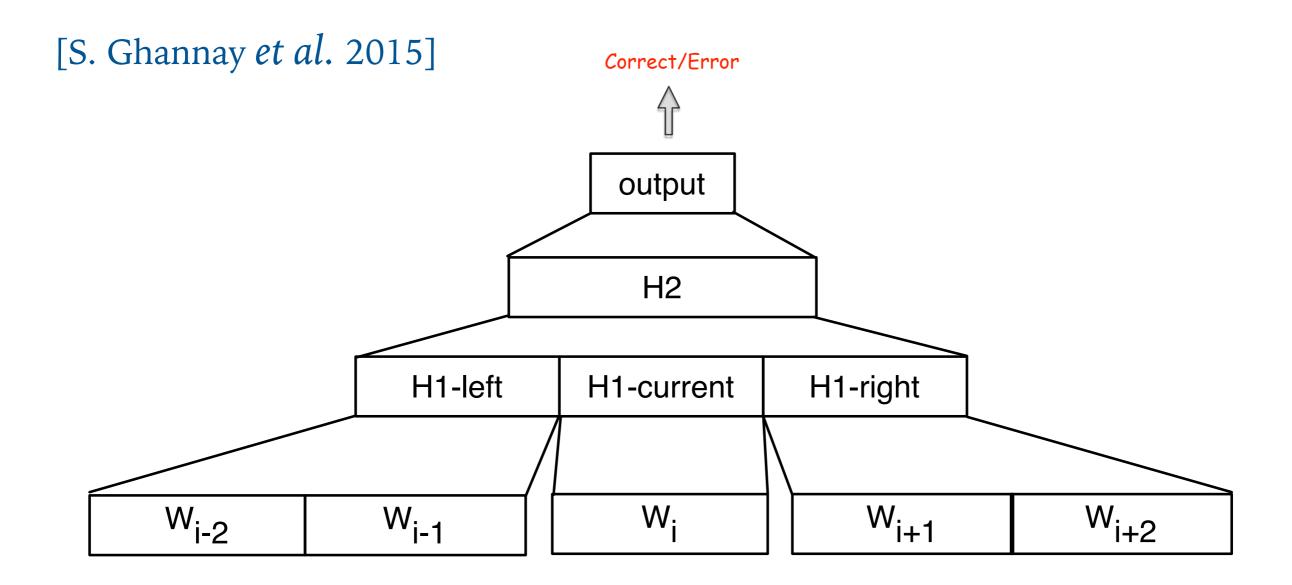


Figure 7: MLP-MS architecture for ASR error detection task

Experimental data

Training of the neural system:

Automatic transcriptions of the ETAPE Corpus, generated by:

- ✤ ASR 1: CMU Sphinx decoder
 - acoustic models: GMM/HMM

Training data of the word embeddings:

Corpus composed of 2 billions of words:

- Articles of the French newspaper "Le Monde",
- French Gigaword corpus,
- Articles provided by Google News,
- Manual transcriptions: 400 hours of French broadcast news.

ASR	Name	#words REF	#words HYP	WER
Culting	Train	349K	316K	25.9
Sphinx GMM	Dev	54K	50K	25.2
	Test	58K	53K	22.5

Table 1: Composition of the experimental corpus

Evaluation results

- Neural architecture vs. CRF
- Evaluation metrics:
 - Error label: Recall, Precision and F-measure
 - Overall classification: CER

Experimental results

Comparison of different word representations

			Label error	Global
Approach	Corpus	representation	F-measure	CER
Neural		glove	58.83	10.66
		w2v 61.81	61.81	10.54
(MLP-MS)	Dev	tur	59.11	10.56
		Auto-encoder-200	62.47	9.99

Table 2: Comparison on Dev of different types of word embeddings used as additional features in MLP-
MS error detection system.

Experimental results

2.Performance of MLP-MS on Test corpus

	Label error	Global
Approach	F-measure	CER
CRF(baseline)	57.6	8.78
MLP-MS	61.4	8.43

Table 3: Error detection results on Test corpus

- Ground truth: alignement of the reference with the automatic transcriptions
- Predictions: classifier outputs
- Correct predictions: label predictions = label ground truth

Ground truth	С	С	C	E	E	ΕE
Predictions	E	С	E	E	E	СС
Correct predictions	E	С	E	E	E	СС

Span: contiguous errors segment correctly detected.

Ground truth	C C C E E E E
Predictions	ECEEECC
Correct predictions	ECEEECC

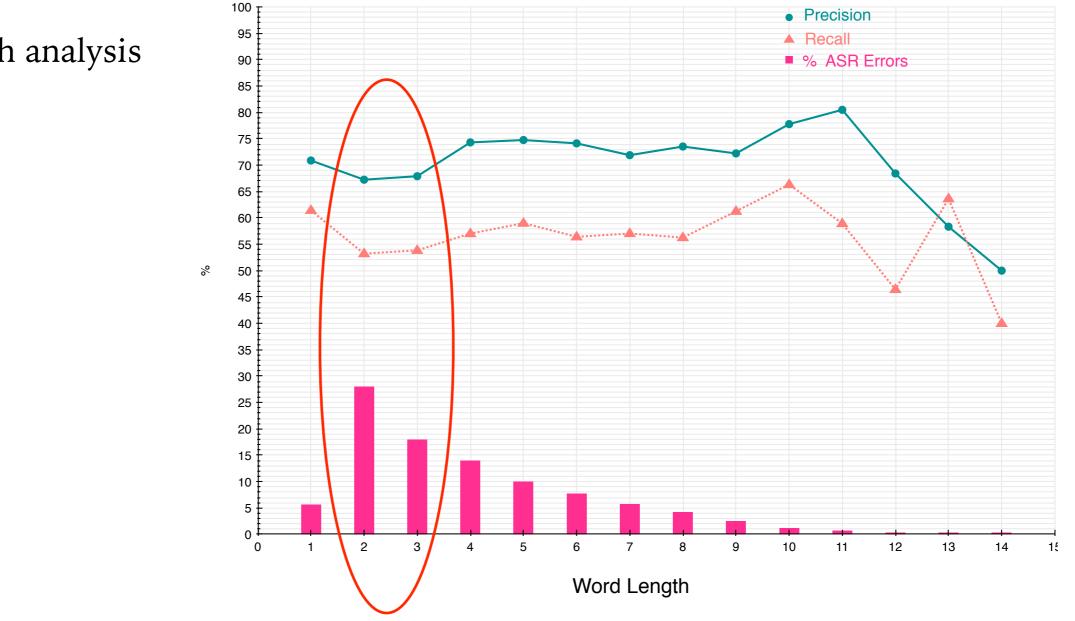


Figure 9: Recall and precision for the erroneous word prediction and the percentage of erroneous words by word length on Dev corpus

1.Word length analysis

2. Function and non function words analysis

- Function words
 - stop list of 160 words
 - average length: 2.8 letters
- Non function words
 - average length: 6.3 letters

	Label error			
Words	Precision	Recall		
Non function	75.1	61.0		
Function	66.9	51.7		

Table 5: Function and non function words analysison Dev corpus

2. Function and non function words analysis

- Function words
 - stop list of 160 words
 - average length: 2.8 letters
- Non function words
 - average length: 6.3 letters

	Label error			
Words	Precision	Recall		
Non function	75.1	61.0		
Function	66.9	51.7		

Table 5: Function and non function words analysison Dev corpus

 75.65% of erroneous function words are of length 2 or 3

3. Average error segment size (average span) analysis

	Corpus	Average span	Standard deviation
Ground truth	Train Dev	3.03 3.24	1.72 2.15
Predictions	Dev	2.92	2.82
Correct predictions	Dev	2.67	1.17
CRF	Dev	3.29	1.81

Table 6: The average span and the standard deviation for the ground truth, the predictions,the correct predictions and the CRF outputs.

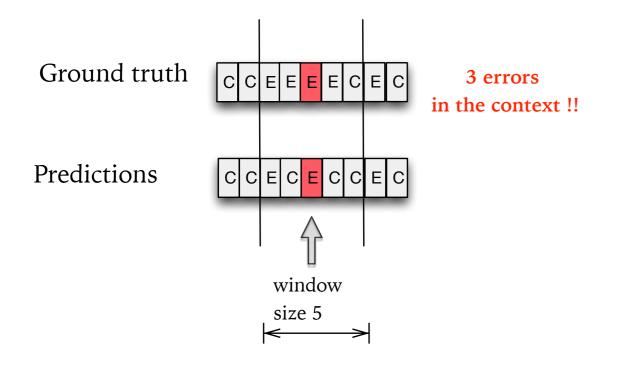
3. Average error segment size (average span) analysis

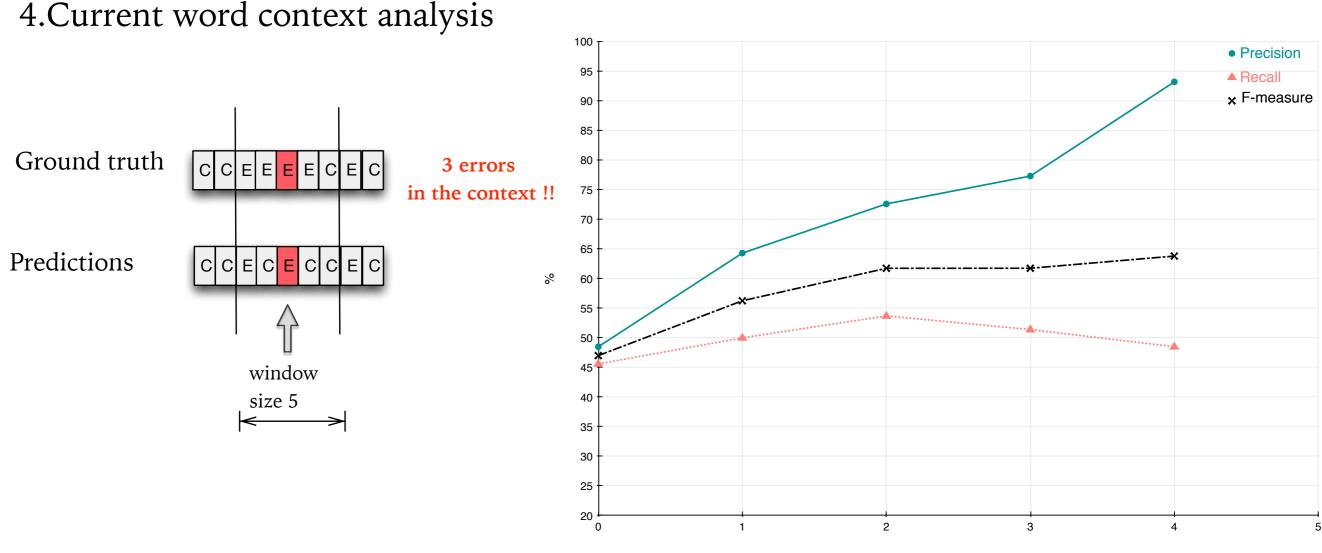
	Corpus	Average span	Standard deviation
Ground truth	Train Dev	3.03 3.24	1.72 2.15
Predictions	Dev	2.92	2.82
Correct predictions	Dev	2.67	1.17
CRF	Dev	3.29	1.81

Table 6: The average span and the standard deviation for the ground truth, the predictions,the correct predictions and the CRF outputs.

MLP-MS takes local decisions

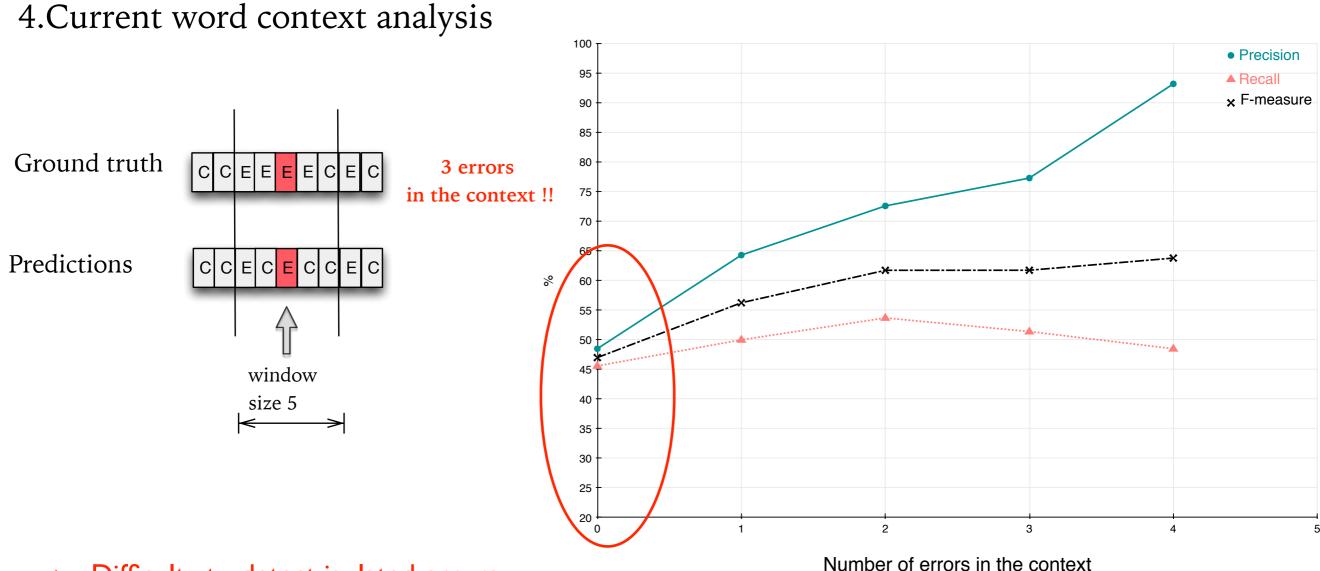
4.Current word context analysis





Number of errors in the context

Figure 10: Precision, recall and F-measures for the erroneous word prediction relative to the number of errors in its context.



- Difficulty to detect isolated errors
- Isolated errors don't trigger a significant linguistic rupture

Figure 10: Precision, recall and F-measures for the erroneous word prediction relative to the number of errors in its context.

5.Syntactic role analysis

- EQ: $POS_{Hyp} = POS_{Ref}$
- ✤ DIFF: POS_{Hyp} != POS_{Ref}

	Label error			
POS	Precision	Recall		
EQ	29.01	51.51		
DIFF	95.57	56.82		

Table 7: Error analysis results on Dev corpusaccording to the part of speech tag of the automatictranscriptions and reference transcriptions

5.Syntactic role analysis

- EQ: $POS_{Hyp} = POS_{Ref}$
- ✤ DIFF: POS_{Hyp} != POS_{Ref}

	Label error		
POS	Precision	Recall	
EQ	29.01	51.51	
DIFF	95.57	56.82	

 Weak linguistic disruption makes ASR errors hard to detect

Table 7: Error analysis results on Dev corpusaccording to the part of speech tag of the automatictranscriptions and reference transcriptions

Conclusions

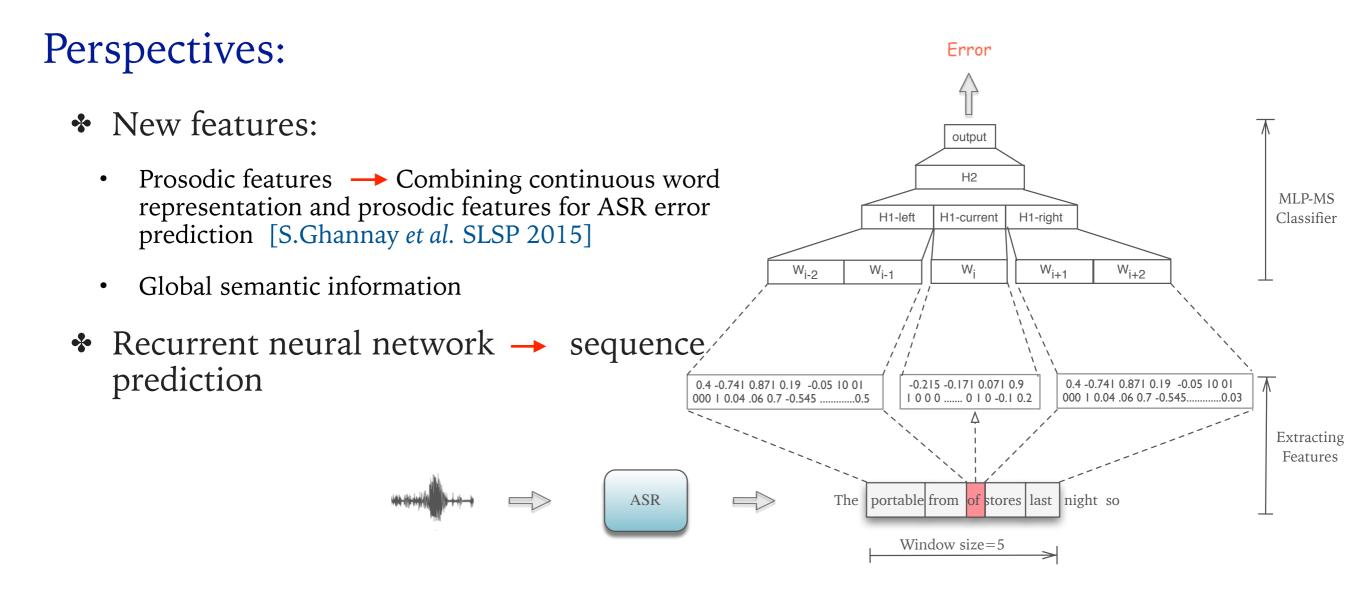
ASR error detection system

- Combined word embeddings
- MLP-MS architecture

ASR errors hard to detect:

- words of length 2 and 3 (letters)
- function words
- isolated errors
- errors in a context slightly linguistically disrupted

Conclusions



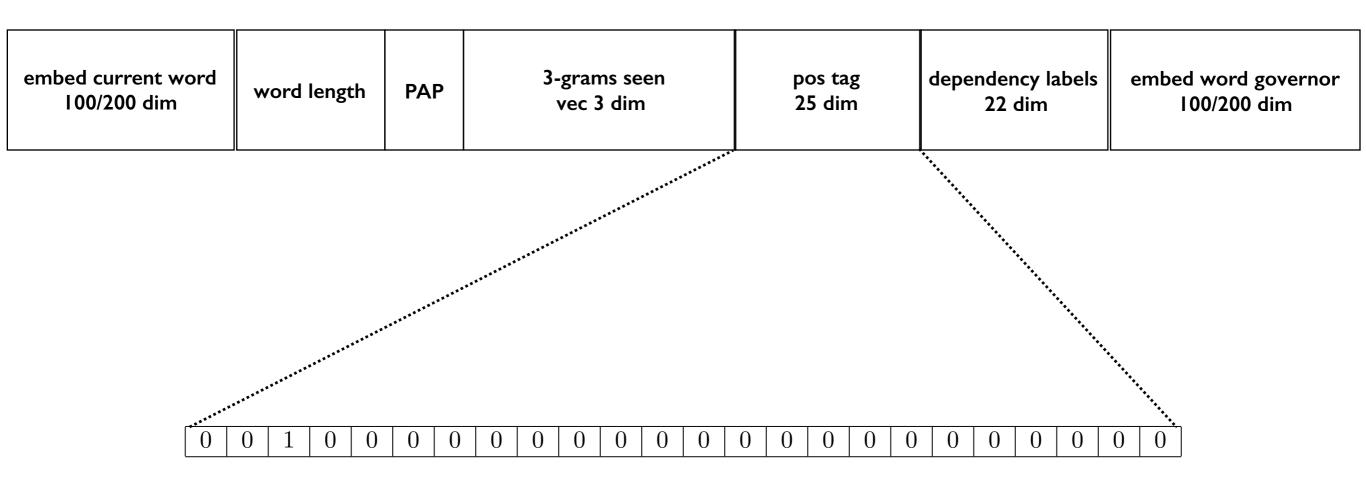
Chank you

Neural network input feature vector format

embed current word I 00/200 dim	word length	PAP	3-grams seen vec 3 dim	pos tag 25 dim	dependency labels 22 dim	embed word governor I 00/200 dim
------------------------------------	-------------	-----	---------------------------	-------------------	-----------------------------	-------------------------------------

Figure 2 : Neural network input feature vector format (152/252 D)

Neural network input feature vector format



Example: 25 POS tags, 3rd POS tag

Figure 2 : Neural network input feature vector format (152/252 D)